Answer on Question \#63336 - Math - Calculus

Question

To fill an order for 100 units of a product, a firm wishes to distribute the production between its two plants, Plant 1 and Plant 2. The total cost function is given by

$$
\mathrm{c}=\mathrm{f}\left(\mathrm{q} _1, \mathrm{q} _2\right)=0.5 \mathrm{q}_{-} 1 \wedge 2+2 \mathrm{q}_{-} 1+32 \mathrm{q}_{-} 2+500
$$

where $\mathrm{q}_{-} 1$ and $\mathrm{q}_{-} 2$ are the number of units produced at Plants 1 and 2 , respectively. How should the output be distributed in order to minimize costs?

Solution

q_{1} - number of units produced at Plant 1,
q_{2} - number of units produced at Plant 2.
$q_{1}+q_{2}=100$ (units of a product).
$c=f\left(q_{1}, q_{2}\right)=0.5 q_{1}^{2}+2 q_{1}+32 q_{2}+500 \rightarrow \mathrm{~min}$.
Obviously
$q_{2}=100-q_{1}$.
We search for a minimum of function:

$$
c\left(q_{1}, q_{2}\right)=0.5 q_{1}^{2}+2 q_{1}+32\left(100-q_{1}\right)+500=0.5 q_{1}^{2}-30 q_{1}+3700 .
$$

Find the derivative:
$\frac{d}{d q_{1}}\left(0.5 q_{1}^{2}-30 q_{1}+3700\right)=0.5 \cdot 2 q_{1}-30=q_{1}-30=0 \Rightarrow q_{1}=30$.
Find the second derivative:
$\frac{d^{2}}{d q_{1}^{2}}\left(0.5 q_{1}^{2}-30 q_{1}+3700\right)=\frac{d}{d q_{1}}\left(q_{1}-30\right)=1>0$
\Rightarrow point $q_{1}=30$ is minimum, hence $q_{2}=100-q_{1}=100-30=70$.
To minimize costs, set $c\left(q_{1}, q_{2}\right)=c(30,70)$.
Answer: $q_{1}=30, q_{2}=70$.

