ANSWER ON QUESTION \#62927 - MATH - CALCULUS
 QUESTION

Find limit $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}$, where F_{n} is a Fibonacci number, e is Euler's number.

SOLUTION

We know that

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} . \tag{1}
\end{equation*}
$$

$F_{1}=F_{2}=1, F_{3}=F_{1}+F_{2}=1+1=2, F_{4}=F_{2}+F_{3}=1+2=3, F_{5}=F_{3}+F_{4}=2+3=5, \ldots$
Use (1) and let

$$
L=\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{F_{n-1}+F_{n}}{F_{n}}=\lim _{n \rightarrow \infty} \frac{F_{n-1}}{F_{n}}+1=1+\frac{1}{\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}} \text { (2). }
$$

On the other hand, $n \rightarrow \infty, m=n-1 \rightarrow \infty$ and

$$
\left.\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}=|n-1=m, n=m+1|=\lim _{m \rightarrow \infty} \frac{F_{m+1}}{F_{m}}=L \mathbf{3}\right)
$$

It follows from (3) that

$$
\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}=L
$$

Substituting (4) into (2)

$$
L=1+\frac{1}{L}
$$

Multiplying both sides by L

$$
L^{2}=L+1
$$

Hence

$$
L^{2}-L-1=0 .
$$

Solutions of this quadratic equation are

$$
L_{1}=\frac{1-\sqrt{(-1)^{2}-4 \cdot(-1)}}{2}=\frac{1-\sqrt{5}}{2}, L_{2}=\frac{1+\sqrt{(-1)^{2}-4 \cdot(-1)}}{2}=\frac{1+\sqrt{5}}{2} .
$$

Because all terms F_{n}, F_{n-1} are greater than 1 , so $\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}$ can't be negative respectively.
Thus, the correct answer will be

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=L=\frac{1+\sqrt{5}}{2} \approx 1.618 . \text { Hence } L \neq e, \text { where } e \approx 2.718 \text { is Euler's number. }
$$

ANSWER: $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2}$.

