ANSWER ON QUESTION #62927 - MATH - CALCULUS

QUESTION

Find limit $\lim_{n\to\infty}\frac{F_{n+1}}{F_n}$, where F_n is a Fibonacci number, e is Euler's number.

SOLUTION

We know that

$$F_n = F_{n-1} + F_{n-2}$$
. (1)

$$F_1 = F_2 = 1$$
, $F_3 = F_1 + F_2 = 1 + 1 = 2$, $F_4 = F_2 + F_3 = 1 + 2 = 3$, $F_5 = F_3 + F_4 = 2 + 3 = 5$,...

Use (1) and let

$$L = \lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \lim_{n \to \infty} \frac{F_{n-1} + F_n}{F_n} = \lim_{n \to \infty} \frac{F_{n-1}}{F_n} + 1 = 1 + \frac{1}{\lim_{n \to \infty} \frac{F_n}{F_{n-1}}}$$
(2).

On the other hand, $n \to \infty$, $m = n - 1 \to \infty$ and

$$\lim_{n\to\infty}\frac{F_n}{F_{n-1}}=|n-1=m,\ n=m+1|=\lim_{m\to\infty}\frac{F_{m+1}}{F_m}=L \ \textbf{(3)}$$

It follows from (3) that

$$\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = L.$$
 (4)

Substituting (4) into (2)

$$L=1+\frac{1}{L}.$$

Multiplying both sides by L

$$L^2 = L + 1$$
.

Hence

$$L^2-L-1=0.$$

Solutions of this quadratic equation are

$$L_1 = \frac{1 - \sqrt{(-1)^2 - 4 \cdot (-1)}}{2} = \frac{1 - \sqrt{5}}{2}, L_2 = \frac{1 + \sqrt{(-1)^2 - 4 \cdot (-1)}}{2} = \frac{1 + \sqrt{5}}{2}.$$

Because all terms F_n , F_{n-1} are greater than 1, so $\lim_{n\to\infty}\frac{F_n}{F_{n-1}}$ can't be negative respectively.

Thus, the correct answer will be

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=L=\frac{1+\sqrt{5}}{2}\approx 1.618$$
. Hence $L\neq e$, where $e\approx 2.718$ is Euler's number.

ANSWER:
$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1+\sqrt{5}}{2}$$
.