Answer on Question #62837 - Math - Calculus

Question

evaluate the following using Beta function:

 $l=integration(dx/sqrt(1-(x)^n))$ limits: from zero to one

Solution

$$I = \int_0^1 \frac{dx}{\sqrt{1 - x^n}}$$

Substituting $z=x^n$ obtain $x=\sqrt[n]{z}=z^{\frac{1}{n}}$ and $dx=\left(z^{\frac{1}{n}}\right)'dz=\frac{1}{n}z^{\frac{1}{n}-1}dz$.

If x = 0, then z = 0; if x = 1, then z = 1. In other words, limits of integration do not change.

After this step we proceed with the calculation of integral:

$$I = \frac{1}{n} \int_0^1 z^{\frac{1}{n} - 1} \frac{1}{\sqrt{1 - z}} dz = \frac{1}{n} \int_0^1 z^{\frac{1}{n} - 1} (1 - z)^{-\frac{1}{2}} dz = \frac{1}{n} \int_0^1 z^{\frac{1}{n} - 1} (1 - z)^{\frac{1}{2} - 1} dz.$$

By definition, the Beta function is

$$B(p,q) = \int_0^1 z^{p-1} (1-z)^{q-1} dz$$
 $(p > 0, q > 0).$

In our case $p = \frac{1}{n}$ and $q = \frac{1}{2}$.

Then

$$I = \int_0^1 \frac{dx}{\sqrt{1 - x^n}} = \frac{1}{n} \int_0^1 z^{\frac{1}{n} - 1} (1 - z)^{\frac{1}{2} - 1} dz = \frac{1}{n} B\left(\frac{1}{n}, \frac{1}{2}\right).$$

Answer: $I = \int_0^1 \frac{dx}{\sqrt{1-x^n}} = \frac{1}{n} B\left(\frac{1}{n}, \frac{1}{2}\right)$.