Answer on Question \#62421 - Math - Discrete Mathematics

Question

1. If a quiz contains five multiple-choice questions, each of which has 4 choices. In how many ways can this be answered?

Solution

It is an arrangement with repetition. There are 4 ways to choose an alternative in each question. So the quiz can be answered in

$$
4^{5}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=512 \text { ways. }
$$

Answer: 512.

Question

2. How many different ways can a visiting nurse see six patients if she is to visit at most 3 of them in one day?

Solution

It is computed by means of the rule of sum (addition principle of combinatorics) and combinations without repetitions:

$$
\begin{aligned}
& \qquad \quad n=\binom{6}{0}+\binom{6}{1}+\binom{6}{2}+\binom{6}{3}=\frac{6!}{6!0!}+\frac{6!}{1!5!}+\frac{6!}{2!4!}+\frac{6!}{3!3!}= \\
& \quad=1+6+\frac{6 \cdot 5}{2}+\frac{6 \cdot 5 \cdot 4}{3 \cdot 2}= \\
& =1+6+15+20=42, \\
& \text { where } \\
& \binom{n}{k}=\frac{n!}{k!(n-k)!}, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n .
\end{aligned}
$$

It should be mentioned that a visiting nurse can see 0 or 1 or 2 or 3 patients.
Answer: 42.

Question

3. How many different signals using 9 flags can be made if 4 are red, 3 are blue and 2 are white?

Solution

Such questions are solved by permutations with repetition of 9 objects, where there are 4 indistinguishable red flags, 3 indistinguishable blue flags, 2 indistinguishable white flags:

$$
\frac{9!}{4!3!2!}=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 2}=1260
$$

Answer: 1260.

Question

4. In how many ways can 5 individuals be seated in a round table with 5 chairs if 2 of them refuse to sit next to each other?

Solution

Method 1

It is a circular permutation with restriction. In this situation Black individuals can be seated in a round table with 3 chairs in 3 ! ways and Red individuals be seated in 2 ways.

$$
3!\cdot 2=3 \cdot 2 \cdot 2=12
$$

Method 2

The round table does not have a beginning nor end. Combinations 123456 and 612345 are completely the same. To avoid double counting 1 is fixed as the starting point. Then 5 individuals can be seated at a round table in

$$
|U|=(5-1)!=4!\text { ways. }
$$

We shall use the formula

$$
|U|=|A|+|\bar{A}|,
$$

where $|U|$ is the total number of combinations, $|A|$ is the number of 'wrong' combinations, $|\bar{A}|$ is the number of 'correct' combinations.
If the mentioned two individuals can sit next to each other, then we could think of them two as one person, so there will be 4 people to sit down and the mentioned two individuals can sit in two different ways. So we shall multiply the number of combinations by 2 . The number of combinations where the two individuals sit next to each other is

$$
|A|=(4-1)!\cdot 2=3!\cdot 2 .
$$

The total number of combinations to seat 5 individuals in a round table with 5 chairs if 2 of them refuse to sit next to each other will be

$$
\begin{gathered}
|\bar{A}|=|U|-|A|=4!-3!2=4 \cdot 3!-2 \cdot 3!=(4-2) \cdot 3!=2 \cdot 3!= \\
\quad=2 \cdot 3 \cdot 2=12
\end{gathered}
$$

Answer: 12.

Question

5. If a basketball team has 10 games to play, how many different outcomes of 6 wins and 4 losses are possible?

Solution

Such questions are solved by permutations with repetition of 10 objects, where there are 6 indistinguishable wins and 4 indistinguishable losses:

$$
\frac{10!}{6!4!}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2}=210
$$

Answer: 210.

Question

6. There are 12 people at a party. If they all shake hands once, how many different handshakes are there?

Solution

It is a combination without repetition. The total number of shaking hands is

$$
\binom{n}{2}=\frac{n!}{(n-2)!\cdot 2!}=\frac{n(n-1)}{2}=\frac{12 \cdot(12-1)}{2}=\frac{12 \cdot 11}{2}=66
$$

Answer: 66.

Question

7. In how many ways can 6 individuals be seated in a row if three insist on sitting next to each other?

Solution

Method 1

It is computed by means of the rule of product (multiplication principle of combinatorics) and permutations without repetitions.
There are 4 ! ways to arrange a group of 3 individuals with 3 other persons. Among the three individuals (in a group), they can arrange themselves in 3 ! different ways. Therefore, 6 individuals can be seated in a row if three insist on sitting next to each other in
$4!\cdot 3!=4 \cdot 3 \cdot 2 \cdot 3 \cdot 2=4 \cdot 3^{2} \cdot 2^{2}=4 \cdot 9 \cdot 4=4^{2} \cdot 9=16 \cdot 9=144$ ways.

Method 2

Let X be individuals who insists on sitting next to each other and O are others. So we have XXXOOO where the first X can be chosen in 3 ways, the second X in 2 ways and the third X in 1 way. There are $3 \cdot 2 \cdot 1=3$! ways.

The first O can be chosen in 3 ways, the second O in 2 ways and the third O in 1 way. There are $3 \cdot 2 \cdot 1=3$! ways.
There are

$$
3!\cdot 3!=36
$$

ways in total.
Individuals X and O can be arranged in a row as follows:

1) $x \times x \circ \circ O$
2) $O X X X O O$
3) O O X X X O
4) O O O X X X

There are 4 possibilities of arrangement.
Therefore, the number of ways will be multiplied by 4 .
So,
$4 \cdot 3!\cdot 3!=4!\cdot 3!=4 \cdot 3 \cdot 2 \cdot 3 \cdot 2=4 \cdot 3^{2} \cdot 2^{2}=4 \cdot 9 \cdot 4=4^{2} \cdot 9=$ $=16 \cdot 9=144$.
Answer: 144.

