Answer on Question \#62217 - Math - Calculus

Show that for any vector field F

$$
\nabla \cdot(\nabla \times F)=0
$$

Solution

If $F=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a vector field in R^{3}, then div curl $\mathbf{F}=0$.
Using the definition of divergence and curl obtain:
div curl $\mathbf{F}=\nabla \cdot \operatorname{curl} \mathbf{F}=\nabla \cdot(\nabla \times \mathbf{F})=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \cdot\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right|=$ $=\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \cdot\left[\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \mathbf{i}-\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right) \mathbf{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}\right]=$ $=\frac{\partial}{\partial x}\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)-\frac{\partial}{\partial y}\left(\frac{\partial R}{\partial x}-\frac{\partial P}{\partial z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=\left(\frac{\partial^{2} R}{\partial x \partial y}-\frac{\partial^{2} Q}{\partial x \partial z}\right)-\left(\frac{\partial^{2} R}{\partial y \partial x}-\frac{\partial^{2} P}{\partial y \partial z}\right)+$ $\left(\frac{\partial^{2} Q}{\partial z \partial x}-\frac{\partial^{2} P}{\partial z \partial y}\right)=\left(\frac{\partial^{2} R}{\partial x \partial y}-\frac{\partial^{2} R}{\partial y \partial x}\right)+\left(\frac{\partial^{2} Q}{\partial z \partial x}-\frac{\partial^{2} Q}{\partial x \partial z}\right)+\left(\frac{\partial^{2} P}{\partial y \partial z}-\frac{\partial^{2} P}{\partial z \partial y}\right)=0+0+0=$ $=0$, because the distributive property was applied,
$\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1, \mathbf{i} \cdot \mathbf{j}=\mathbf{i} \cdot \mathbf{k}=\mathbf{j} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=\mathbf{k} \cdot \mathbf{j}=0$ and
by Clairaut's heorem (or Schwarz's theorem), terms can be reduced because of the symmetry of second derivatives.

