Answer on Question \#62173 - Math - Discrete Mathematics

Question

Determine the number of positive integers x, where $x<100$ and x is divisible by 2,3 or 5 .

Solution

Method 1

The first positive integer divisible by 2 is $2=2 \cdot 1$. Solving inequality $2 k \leq 99$, where k is integer, we get the number of positive integers less than 100 and divisible by 2 .

The $[y]$ means the integer part of y (the largest integer less than or equal to y).
Let us find the number of positive integers x_{1}, where x_{1} is divisible by 2 :

$$
N(A)=\left[\frac{99}{2}\right]=[49.5]=49 .
$$

Further we shall find the number of positive integers x_{2}, where x_{2} is divisible by 3 :

$$
N(B)=\left[\frac{99}{3}\right]=33
$$

In the next step we shall find the number of positive integers x_{3}, where x_{3} is divisible by 5:

$$
N(C)=\left[\frac{99}{5}\right]=[19.8]=19 .
$$

Then we shall determine the number of positive integers x_{4}, where x_{4} is divisible by $6=3 \cdot 2$:

$$
N(A \cap B)=\left[\frac{99}{6}\right]=[16.5]=16
$$

Then we shall determine the number of positive integers x_{5}, where x_{5} is divisible by $10=2 \cdot 5$:

$$
N(A \cap C)=\left[\frac{99}{10}\right]=[9.9]=9
$$

Then we shall determine the number of positive integers x_{6}, where x_{6} is divisible by $15=3 \cdot 5$:

$$
N(B \cap C)=\left[\frac{99}{15}\right]=[6.6]=6
$$

Now we shall determine the number of positive integers x_{7}, where x_{7} is divisible by $30=2 \cdot 3 \cdot 5:$

$$
N(A \cap B \cap C)=\left[\frac{99}{30}\right]=[3.3]=3 .
$$

Method 2

We shall use the general formula for the l-th term of the arithmetic sequence:
$a_{l}=a_{1}+(l-1) d$,
hence

$$
l=\frac{a_{l}-a_{1}}{d}+1 .
$$

The first positive integer divisible by 2 is $a_{1}=2$, the last positive integer less than 100 and divisible by 2 is $a_{l}=98$, hence the number of positive integers x_{1}, where x_{1} is divisible by 2 :

$$
N(A)=\frac{98-2}{2}+1=\frac{96}{2}+1=49 .
$$

The first positive integer divisible by 3 is $b_{1}=2$, the last positive integer less than 100 and divisible by 3 is $b_{l}=99$, hence the number of positive integers x_{2}, where x_{2} is divisible by 3 :

$$
N(B)=\frac{99-3}{3}+1=\frac{96}{3}+1=33 .
$$

The first positive integer divisible by 5 is $c_{1}=5$, the last positive integer less than 100 and divisible by 5 is $c_{l}=95$, hence the number of positive integers x_{3}, where x_{3} is divisible by 5 :

$$
N(C)=\frac{95-5}{5}+1=\frac{90}{5}+1=19 .
$$

The first positive integer divisible by $6=2 \cdot 3$ is $d_{1}=6$, the last positive integer less than 100 and divisible by 6 is $d_{l}=96$, hence the number of positive integers x_{4}, where x_{4} is divisible by 6:

$$
N(A \cap B)=\frac{96-6}{6}+1=\frac{90}{6}+1=16 .
$$

The first positive integer divisible by $10=2 \cdot 5$ is $e_{1}=10$, the last positive integer less than 100 and divisible by 10 is $e_{l}=90$, hence the number of positive integers x_{5}, where x_{5} is divisible by 10:

$$
N(A \cap C)=\frac{90-10}{10}+1=\frac{80}{10}+1=9 .
$$

The first positive integer divisible by $15=3 \cdot 5$ is $f_{1}=15$, the last positive integer less than 100 and divisible by 15 is $f_{l}=90$, hence the number of positive integers x_{6}, where x_{6} is divisible by 15:

$$
N(B \cap C)=\frac{90-15}{15}+1=\frac{75}{15}+1=6 .
$$

The first positive integer divisible by $30=2 \cdot 3 \cdot 5$ is $g_{1}=30$, the last positive integer less than 100 and divisible by 30 is $g_{l}=90$, hence the number of positive integers x_{7}, where x_{7} is divisible by 30 :

$$
N(A \cap B \cap C)=\frac{90-30}{30}+1=\frac{60}{30}+1=3 .
$$

Finally using the inclusion-exclusion principle we determine the required value:
$N(A \cup B \cup C)=N(A)+N(B)+N(C)-N(A \cap B)-N(A \cap C)-N(B \cap C)+N(A \cap B \cap C)$
$=49+33+19-16-9-6+3=73$.

Answer: 73.

