Answer on Question #62052 – Math – Calculus

Question

Trace the curve $y^2(x^2-9) = x^4$ by stating all the properties used in tracing.

Solution

Symmetry

The curve is symmetric with respect to x-axis and y-axis, because it includes x and y in even degrees. So we can trace its graph only in the first quadrant, where $x \ge 0$, $y \ge 0$.

The graphs in the other quadrants can be obtained using symmetry.

The curve is symmetric with respect to origin, because when we replace both x with -x and y with

-y the equation will be the same.

Let $x \ge 0$ and $y \ge 0$. It follows from $y^2 = \frac{x^4}{x^2 - 9}$ that $y = \frac{x^2}{\sqrt{x^2 - 9}}$, when $y \ge 0$.

Intercepts

y=0 if and only if x=0.

Intercepts: (0, 0)

Domain

If $y^2 = \frac{x^4}{x^2 - 9}$, then $x \neq 3$ and $x \neq -3$.

Besides, $y^2 \ge 0$ and $x^4 \ge 0$, then $x^2 - 9 > 0$, hence x > 3 or x < -3. It was found that x = 0 if and only if y = 0.

Asymptotes

Let x > 3:

$$y = \frac{x^2}{\sqrt{x^2 - 9}}$$

 $\lim_{x \to 3^+} \frac{x^2}{\sqrt{x^2 - 9}} = \infty, \text{ hence } x = 3 \text{ is a vertical asymptote. Similarly } x = -3 \text{ will be a vertical asymptote.}$ $\lim_{x \to \infty} \frac{x^2}{\sqrt{x^2 - 9}} = \infty, \ k = \lim_{x \to \infty} \frac{x^2}{x\sqrt{x^2 - 9}} = 1,$

$$b = \lim_{x \to \infty} \left(\frac{x^2}{\sqrt{x^2 - 9}} - kx \right) = \lim_{x \to \infty} \left(\frac{x^2}{\sqrt{x^2 - 9}} - x \right) = \lim_{x \to \infty} \left(\frac{x^2 - 9 + 9}{\sqrt{x^2 - 9}} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 - 9} + \frac{9}{\sqrt{x^2 - 9}} - x \right) = \lim_{x \to \infty} \left(\sqrt{x^2 - 9} - x + \frac{9}{\sqrt{x^2 - 9}} \right) = \lim_{x \to \infty} \left(\frac{x^2 - 9 - x^2}{\sqrt{x^2 - 9} + x} + \frac{9}{\sqrt{x^2 - 9}} \right) = \lim_{x \to \infty} \left(\frac{-9}{\sqrt{x^2 - 9} + x} + \frac{9}{\sqrt{x^2 - 9}} \right) = 0.$$

Hence y = kx + b, i. e., y=x is an oblique asymptote.

Critical points:

$$\frac{d}{dx}\left(\frac{x^2}{\sqrt{x^2-9}}\right) = \frac{d}{dx}\left(\frac{x^2-9+9}{\sqrt{x^2-9}}\right) = \frac{d}{dx}\left(\sqrt{x^2-9} + \frac{9}{\sqrt{x^2-9}}\right) = \frac{2x}{2\sqrt{x^2-9}} - \frac{9}{2(x^2-9)^{\frac{3}{2}}} \times 2x = \frac{x(x^2-18)}{(x^2-9)^{\frac{3}{2}}}$$

Critical point at $x=3\sqrt{2}$ (local minimum)

$$y(3\sqrt{2}) = 6$$

$$\frac{d^2}{dx^2} \left(\frac{x^2}{\sqrt{x^2 - 9}}\right) = \frac{9(x^2 + 18)}{(x^2 - 9)^{\frac{5}{2}}} > 0 \text{ if } x > 3, \text{ hence function is concave up}$$

Therefore, the graph in the first quadrant will look as follows:

Hence, the graph for the curve is

The trace for the whole curve.

Using the symmetries

Domain: $x \in (-\infty, -3) \cup \{0\} \cup (3, \infty)$. Range: $y \in (-\infty, -6) \cup \{0\} \cup (6, \infty)$. Intercept: (0, 0). Asymptotes: y = x, y = -x, x = 3, x = -3. Critical points: $(3\sqrt{2}, 6), (3\sqrt{2}, -6), (-3\sqrt{2}, 6), (-3\sqrt{2}, -6)$.

www.AssignmentExpert.com