Answer on Question \#62052 - Math - Calculus

Question

Trace the curve $y^{2}\left(x^{2}-9\right)=x^{4}$ by stating all the properties used in tracing.

Solution

Symmetry

The curve is symmetric with respect to x -axis and y -axis, because it includes x and y in even degrees. So we can trace its graph only in the first quadrant, where $x \geq 0, y \geq 0$.

The graphs in the other quadrants can be obtained using symmetry.
The curve is symmetric with respect to origin, because when we replace both x with - x and y with -y the equation will be the same.

Let $\mathrm{x} \geq 0$ and $\mathrm{y} \geq 0$. It follows from $y^{2}=\frac{x^{4}}{x^{2}-9}$ that $y=\frac{x^{2}}{\sqrt{x^{2}-9}}$, when $y \geq 0$.

Intercepts

$\mathrm{y}=0$ if and only if $\mathrm{x}=0$.
Intercepts: $(0,0)$

Domain

If $y^{2}=\frac{x^{4}}{x^{2}-9}$, then $x \neq 3$ and $x \neq-3$.
Besides, $y^{2} \geq 0$ and $x^{4} \geq 0$, then $x^{2}-9>0$, hence $\mathrm{x}>3$ or $\mathrm{x}<-3$. It was found that $x=0$ if and only if $y=0$.

Asymptotes

Let $x>3$:

$$
y=\frac{x^{2}}{\sqrt{x^{2}-9}}
$$

$\lim _{x \rightarrow 3^{+}} \frac{x^{2}}{\sqrt{x^{2}-9}}=\infty$, hence $\mathrm{x}=3$ is a vertical asymptote. Similarly $\mathrm{x}=-3$ will be a vertical asymptote.
$\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{2}-9}}=\infty, k=\lim _{x \rightarrow \infty} \frac{x^{2}}{x \sqrt{x^{2}-9}}=1$,
$b=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{\sqrt{x^{2}-9}}-k x\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}}{\sqrt{x^{2}-9}}-x\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}-9+9}{\sqrt{x^{2}-9}}-x\right)=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-9}+\frac{9}{\sqrt{x^{2}-9}}-x\right)=$
$=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-9}-x+\frac{9}{\sqrt{x^{2}-9}}\right)=\lim _{x \rightarrow \infty}\left(\frac{x^{2}-9-x^{2}}{\sqrt{x^{2}-9}+x}+\frac{9}{\sqrt{x^{2}-9}}\right)=\lim _{x \rightarrow \infty}\left(\frac{-9}{\sqrt{x^{2}-9}+x}+\frac{9}{\sqrt{x^{2}-9}}\right)=0$.
Hence $y=k x+b$, i. e., $\mathrm{y}=\mathrm{x}$ is an oblique asymptote.

Critical points:

$\frac{d}{d x}\left(\frac{x^{2}}{\sqrt{x^{2}-9}}\right)=\frac{d}{d x}\left(\frac{x^{2}-9+9}{\sqrt{x^{2}-9}}\right)=\frac{d}{d x}\left(\sqrt{x^{2}-9}+\frac{9}{\sqrt{x^{2}-9}}\right)=\frac{2 x}{2 \sqrt{x^{2}-9}}-\frac{9}{2\left(x^{2}-9\right)^{\frac{3}{2}}} \times 2 x=\frac{x\left(x^{2}-18\right)}{\left(x^{2}-9\right)^{\frac{3}{2}}}$
Critical point at $x=3 \sqrt{2}$ (local minimum)
$y(3 \sqrt{2})=6$
$\frac{d^{2}}{d x^{2}}\left(\frac{x^{2}}{\sqrt{x^{2}-9}}\right)=\frac{9\left(x^{2}+18\right)}{\left(x^{2}-9\right)^{\frac{5}{2}}}>0$ if $\mathrm{x}>3$, hence function is concave up
Therefore, the graph in the first quadrant will look as follows:

Hence, the graph for the curve is

The trace for the whole curve.
Using the symmetries

Domain: $x \in(-\infty,-3) \cup\{0\} \cup(3, \infty)$.
Range: $y \in(-\infty,-6) \cup\{0\} \cup(6, \infty)$.
Intercept: $(0,0)$.
Asymptotes: $\mathrm{y}=\mathrm{x}, \mathrm{y}=-\mathrm{x}, \mathrm{x}=3, \mathrm{x}=-3$.
Critical points: $(3 \sqrt{2}, 6),(3 \sqrt{2},-6),(-3 \sqrt{2}, 6),(-3 \sqrt{2},-6)$.

