Answer on Question #62050 – Math – Abstract Algebra

Question

Which of the following are binary operations. Justify your answer.

i) The operation \cdot defined on Q by $a \cdot b = a(b - 1)$.

ii) The operation \cdot defined on $[0,\pi]$ by $x \cdot y = \cos xy$.

Also, for those operations which are binary operations, check whether they are associative and commutative.

Solution

A binary operation f(x,y) is an operation that applies to two quantities or expressions x and y.

A binary operation on a nonempty set A is a map f:A×A->A such that

1. f is defined for every pair of elements in A, and

2. f uniquely associates each pair of elements in A to some element of A.

i) The operation \cdot defined on Q by $a \cdot b = a(b - 1)$ is binary

The operation is defined for all $a,b \in Q$. For any $a,b \in Q$, $a(b-1) \in Q$.

If $a=a_1$ and $b=b_1$, hence $a(b-1)=a_1(b_1-1)$

There exist a and b in Q such that $a(b-1)\neq (a-1)b$, hence the operation is **not** commutative.For example: $4(\frac{3}{5} - 1) \neq \frac{3}{5}(4 - 1)$

There exist a, b and c in Q such that $a(b(c-1)-1) \neq (a(b-1))(c-1)$, hence the operation is **not associative**. For example: $\frac{3}{5}(2(3-1)-1) \neq \frac{3}{5}(2-1)(3-1)$

Answer: The operation \cdot defined on Q by $a \cdot b = a(b - 1)$ is binary, not associative and not commutative.

ii) The operation \cdot defined on $[0,\pi]$ by $x \cdot y = \cos xy$ is not binary. Because there exist a and b in $[0,\pi]$ such that $\cos ab \notin [0,\pi]$. For example, $\cos \pi \cdot 1 = -1 \notin [0,\pi]$.

Answer: The operation \cdot defined on $[0,\pi]$ by $x \cdot y = \cos xy$ is not binary.

www.AssignmentExpert.com