Answer on Question \#61735 - Math - Differential Equations

Question \#1

If $u=f(x, y)$ be a function of two independent variables x and y, then $\partial u / \partial y$ is equal to
a) $\lim \Delta x \rightarrow 0(f(x+\Delta x, y)-f(x, y)) / \Delta x$
b) $\lim \Delta y \rightarrow 0(f(x, y+\Delta y)-f(x, y)) / \Delta y$
c) limy $\rightarrow 0(\mathrm{f}(\mathrm{x}, \mathrm{y}+\Delta \mathrm{y})-\mathrm{f}(\mathrm{x}, \mathrm{y})) / \Delta \mathrm{y}$
d) $\lim \Delta \mathrm{y} \rightarrow 0(\mathrm{f}(\mathrm{x}+\Delta \mathrm{x}, \mathrm{y})-\mathrm{f}(\mathrm{x}, \mathrm{y})) / \Delta \mathrm{x}$

Solution

$$
\frac{\partial u}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y} \text { according to the definition of the partial derivative. }
$$

Answer: b) $\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$.

Question \#2

Find the total differential of the function:

$$
u=x^{2} y-3 y .
$$

a) $2 x+\left(x^{2}-3\right) d y$
b) $2 x y d x+x^{2} d y$
c) $2 x y d x+\left(x^{2}-3\right) d y$
d) $2 x y d x+\left(x^{3}-2\right) d y$

Solution

Let x and y be independent variables. Then the total differential of the function $\mathrm{u}=\mathrm{f}(x, y)$ is calculated by the following formula:

$$
\mathrm{du}=\operatorname{df}(x, y)=\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y,
$$

where $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$ are partial derivatives of the function $\mathrm{f}(x, y)$ with respect to x and y respectively.

We hold y fixed and allow x to vary, then

$$
\begin{aligned}
\frac{\partial f(x, y)}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2} y-3 y\right)=\frac{\partial}{\partial x}\left(x^{2} y\right)-\frac{\partial}{\partial x}(3 y)=y \frac{\partial}{\partial x}\left(x^{2}\right)-(3 y) \frac{\partial}{\partial x}(1)= \\
=2 x y-0 & =2 x y .
\end{aligned}
$$

We hold x fixed and allow y to vary, then
$\frac{\partial f(x, y)}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y-3 y\right)=\frac{\partial}{\partial y}\left(x^{2} y\right)-\frac{\partial}{\partial y}(3 y)=x^{2} \frac{\partial}{\partial y}(y)-3 \frac{\partial}{\partial y}(y)=x^{2}-3$.
Thus,
$\mathrm{du}=\mathrm{df}(x, y)=\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y=2 x y \mathrm{~d} x+\left(x^{2}-3\right) \mathrm{d} y$.
Answer: c) $2 x y \mathrm{~d} x+\left(x^{2}-3\right) \mathrm{d} y$.

Question \#3

The total differential du of a function $u(x, y)=0$ is defined as \ldots
a) $\partial u / \partial x d x+\partial u / \partial x d y=0$
b) $\partial u / \partial x d y+\partial u / \partial x d y=0$
c) $\partial u / \partial x d x+\partial u / \partial y d x=0$
d) $\partial u / \partial x d x+\partial u / \partial y d y=0$

Solution

Let x and y be independent variables. Then the total differential of the function $\mathrm{u}=\mathrm{f}(x, y)$ is calculated by the following formula:

$$
\mathrm{du}=\operatorname{df}(x, y)=\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y
$$

where $\frac{\partial f(x, y)}{\partial x}$ and $\frac{\partial f(x, y)}{\partial y}$ are partial derivatives of the function $\mathrm{f}(x, y)$ with respect to x and y respectively.
Thus, the correct answer is

$$
\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y=0
$$

Answer: d) $\frac{\partial f(x, y)}{\partial x} d x+\frac{\partial f(x, y)}{\partial y} d y=0$.

