Answer on Question #61186 – Math – Trigonometry

Question

- Solve triangle ABC which have angle A=250.251, angle B=600.511 and a=3.82. Find c.
 3.6cm
 - 7.0cm
 - 7.4cm
 - 8.8cm
- Solve triangle ABC which have angle A=250.251, angle B=600.511 and a=3.82. Find b.
 5.0cm
 - 7.8cm
 - 7.1cm
 - 6.7cm

Solution

The values you've given for A and B are unrealistic, because the sum of angles of triangle should be 180° (but only angle A= 250.251° > 180°).

But if there is a typo in the task and the real values of angles are $A=25^{\circ}25'$, $B=60^{\circ}51'$, then the problem can be solved by using law of sines:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \,.$$

So

1. Given $A = 25^{\circ}25'$, $B = 60^{\circ}51'$, a = 3.82. Then $C = 180^{\circ} - A - B = 180^{\circ} - 25^{\circ}25' - 60^{\circ}51' = 93^{\circ}44'$ $c = \frac{a \cdot \sin C}{a \cdot a \cdot a} = \frac{3.82 \cdot \sin(93^{\circ}44')}{a \cdot a \cdot a \cdot a} = 8.88 \approx 8.9.$

$$\sin A = \sin(25^{\circ}25') = 0.00^{\circ}$$

2. Given $A = 25^{\circ}25'$, $B = 60^{\circ}51'$, a = 3.82. Then $C = 180^{\circ} - A - B = 180^{\circ} - 25^{\circ}25' - 60^{\circ}51' = 93^{\circ}44'$ $b = \frac{a \cdot \sin B}{\sin A} = \frac{3.82 \cdot \sin(60^{\circ}51')}{\sin(25^{\circ}25')} = 7.77 \approx 7.8.$

Answer: 1. 8.9.

2. 7.8.