Answer on Question \#61005 - Math - Calculus

Question

(a) Let $\mathrm{H}(\mathrm{t})$ be the total weight of all the lobsters, in kg , after t months.

Find a formula for $\mathrm{H}(\mathrm{t})$, expressing it in simplest form, Since the number of lobsters in the tank in months is expressed as $\mathrm{N}(\mathrm{t})=6000 /\left(\mathrm{t}^{\wedge} 2+25\right)$ and the mean weight of lobsters in months is expressed as $\mathrm{W}(\mathrm{t})=1.5 \ln (\mathrm{t} / 4+1)$
(b) draw this function and find its first derivative, $\mathrm{H}^{\prime}(\mathrm{t})$,
(c) Consider the graph of $\mathrm{H}^{\prime}(\mathrm{t})$. By choosing a suitable option, determine the rate at which the total weight of all the lobsters is changing after 2 months and after 10 months. Explain the meaning of your answers with reference to their magnitude and sign.

Solution

(a)
$H(t)=N(t) \cdot W(t)$
$H(t)=\frac{6000}{t^{2}+25} \cdot 1.5 \ln \left(\frac{t}{4}+1\right)=\frac{9000}{t^{2}+25} \ln \left(\frac{t}{4}+1\right)$
(b)

Fig. 1 Plot of function $H(t)$

$$
\begin{aligned}
& H^{\prime}(t)=\left(\frac{9000}{t^{2}+25} \ln \left(\frac{t}{4}+1\right)\right)^{\prime}=\frac{-9000 \cdot 2 t}{\left(t^{2}+25\right)^{2}} \cdot \ln \left(\frac{t}{4}+1\right)+\frac{9000}{t^{2}+25} \cdot \frac{1 \cdot \frac{1}{4}}{\frac{t}{4}+1}= \\
& \quad=\frac{-18000 t}{\left(t^{2}+25\right)^{2}} \cdot \ln \left(\frac{t}{4}+1\right)+\frac{9000}{\left(t^{2}+25\right)} \cdot \frac{1}{t+4}=\frac{-18000 t}{\left(t^{2}+25\right)^{2}} \cdot \ln \left(\frac{t}{4}+1\right)+\frac{9000}{t^{3}+4 t^{2}+25 t+100}
\end{aligned}
$$

(c)

Fig. 2 Plot of $H^{\prime}(t)$
The rate at which the total we ight of all the lobsters is changing after 2 months is given by
$H^{\prime}(2)=\frac{-18000 \cdot 2}{\left(2^{2}+25\right)^{2}} \cdot \ln \left(\frac{2}{4}+1\right)+\frac{9000}{2^{3}+4 \cdot 2^{2}+25 \cdot 2+100}=34.36$
(here magnitude is 34.36 , the sign is positive, hence the total weight of all the lobsters is increasing after 2 months).

The rate at which the total weight of all the lobsters is changing after 10 months is given by
$H^{\prime}(10)=\frac{-18000 \cdot 10}{\left(10^{2}+25\right)^{2}} \cdot \ln \left(\frac{10}{4}+1\right)+\frac{9000}{10^{3}+4 \cdot 10^{2}+25 \cdot 10+100}=-9.28$
(here magnitude is 9.28 , the sign is negative, hence the total weight of all the lobsters is decreasing after 10 months).

