Answer on Question #60957 – Math – Discrete Mathematics

Question

How many integers between 1 and 99 inclusive are divisible by either 2 or 3 or both?

Solution

Let's determine sets A and B in the following way:

A ='integers between 1 and 99 inclusive, which are divisible by 2'; $A = \{a_1, a_2, \dots, a_n\}$;

B ='integers between 1 and 99 inclusive, which are divisible by 3'; $B = \{b_1, b_2, ..., b_m\}$.

Thus,

 $A \cup B$ = 'integers between 1 and 99 inclusive, which are divisible by either 2 or 3 or both';

A \cap B ='integers between 1 and 99, which are divisible by both 2 and 3, thus, they are divisible by 6'; A \cap B= { $c_1, c_2, ..., c_k$ }.

Let's find the number |A| of elements in the set A:

If
$$a_1 = 2$$
, $d = 2$, $a_n = 98$, then $a_n = a_1 + (n-1)d = 2 + 2(n-1) = 98$, hence $n-1 = \frac{98-2}{2}$, that is, $n = 1 + \frac{96}{2}$, $|A| = n = 49$.

Let's find the number |B| of elements in the set B:

If
$$b_1 = 3$$
, $e = 3$, $b_m = 99$, then $b_m = b_1 + (m - 1)e = 3 + 3(m - 1) = 99$, hence $m - 1 = \frac{99 - 3}{3}$, that is, $m = 1 + \frac{96}{3}$, $|B| = m = 33$.

Let's find the number $|A \cap B|$ of elements in the set $A \cap B$:

If
$$c_1 = 6$$
, $f = 6$, $c_k = 96$, then $c_k = c_1 + (k - 1)f = 6 + 6(k - 1) = 96$, hence $k - 1 = \frac{96 - 6}{6}$, that is, $k = 1 + \frac{90}{6}$, $|A \cap B| = k = 16$.

Thus,

 $|A| = 49; |B| = 33; |A \cap B| = 16.$

Let's find the number $|A \cup B|$ of elements in the set $A \cup B$:

 $|A \cup B| = |A| + |B| - |A \cap B|;$

 $|A \cup B| = 49 + 33 - 16 = 66.$

Answer: 66.

www.AssignmentExpert.com