Answer on Question \#60957 - Math - Discrete Mathematics

Question

How many integers between 1 and 99 inclusive are divisible by either 2 or 3 or both?

Solution

Let's determine sets A and B in the following way:
$\mathrm{A}=$ 'integers $^{\prime}$ between 1 and 99 inclusive, which are divisible by $2^{\prime} ; A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$;
$\mathrm{B}=$ ='integers between 1 and 99 inclusive, which are divisible by $3^{\prime} ; B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$.
Thus,
$A \cup B=$ 'integers between 1 and 99 inclusive, which are divisible by either 2 or 3 or both';
$A \cap B=$ 'integers between 1 and 99, which are divisible by both 2 and 3 , thus, they are divisible by $6^{\prime} ; \mathrm{A} \cap \mathrm{B}=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$.

Let's find the number $|A|$ of elements in the set A :
If $a_{1}=2, d=2, a_{n}=98$, then $a_{n}=a_{1}+(n-1) d=2+2(n-1)=98$, hence $n-1=\frac{98-2}{2}$, that is, $n=1+\frac{96}{2},|A|=n=49$.

Let's find the number $|\mathrm{B}|$ of elements in the set B :
If $b_{1}=3, e=3, b_{m}=99$, then $b_{m}=b_{1}+(m-1) e=3+3(m-1)=99$, hence $m-1=\frac{99-3}{3}$, that is, $m=1+\frac{96}{3},|\mathrm{~B}|=m=33$.

Let's find the number $|A \cap B|$ of elements in the set $A \cap B$:
If $c_{1}=6, f=6, c_{k}=96$, then $c_{k}=c_{1}+(k-1) f=6+6(k-1)=96$, hence
$k-1=\frac{96-6}{6}$, that is, $k=1+\frac{90}{6},|\mathrm{~A} \cap \mathrm{~B}|=k=16$.
Thus,
$|A|=49 ;|B|=33 ;|A \cap B|=16$.
Let's find the number $|A \cup B|$ of elements in the set $A \cup B$:
$|A \cup B|=|A|+|B|-|A \cap B| ;$
$|A \cup B|=49+33-16=66$.
Answer: 66.

