Answer on Question \#60912 - Math - Calculus

Question

Find the Derivative of $y=x^{\wedge} 2 e^{\wedge}(-3 x)$

Solution

It is known that

$$
\begin{align*}
& \left(e^{x}\right)^{\prime}=e^{x} \\
& \left(x^{n}\right)^{\prime}=n x^{n-1} \tag{1}
\end{align*}
$$

Substituting $n=2$ into (1) gives

$$
\left(x^{2}\right)^{\prime}=2 x
$$

Substituting $n=1$ into (1) gives

$$
x^{\prime}=1
$$

By a property of derivatives,

$$
\begin{equation*}
(k \cdot h(x))^{\prime}=k \cdot h^{\prime}(x) \tag{2}
\end{equation*}
$$

where k is arbitrary real constant.
Substituting $k=-3, h(x)=x$ into (2) gives

$$
(-3 x)^{\prime}=-3 \cdot x^{\prime}=-3 \cdot 1=-3
$$

Let $f(x)=e^{x}, g(x)=-3 x$, then $f(g(x))=e^{-3 x}$.
The chain rule states that

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

Therefore,

$$
\left(e^{-3 x}\right)^{\prime}=\left.\left(e^{t}\right)^{\prime}\right|_{t=-3 x} \cdot(-3 x)^{\prime}=\left.e^{t}\right|_{t=-3 x} \cdot(-3)=e^{-3 x} \cdot(-3)=-3 e^{-3 x}
$$

Using the product rule $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ for derivatives obtain

$$
y^{\prime}=\left(x^{2} e^{-3 x}\right)^{\prime}=\left(x^{2}\right)^{\prime} e^{-3 x}+x^{2}\left(e^{-3 x}\right)^{\prime}=2 x \cdot e^{-3 x}+x^{2} \cdot\left(-3 e^{-3 x}\right)=\left(2 x-3 x^{2}\right) e^{-3 x}
$$

Answer: $y^{\prime}=\left(2 x-3 x^{2}\right) e^{-3 x}$.

