Answer on Question \#60812 - Math - Calculus

Question

The Taylor series about 0 for the function
$f(x)=\sin (x)$ is $x-x^{3} / 6+x^{5} / 120-x^{7} / 5040+x^{9} / 362880+\ldots$
and the Taylor series about 0 for the function
$\mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is $1+\mathrm{x}+\mathrm{x}^{2} / 2+\mathrm{x}^{3} / 6+\mathrm{x}^{4} / 24+\mathrm{x}^{5} / 120+\ldots$
What is the coefficient of x^{3} in the series for $\mathrm{e}^{\mathrm{x}} \sin (\mathrm{x})$?

Solution

$\mathrm{e}^{\mathrm{x}} \sin (\mathrm{x})=\left(1+\mathrm{x}+\mathrm{x}^{2} / 2+\mathrm{x}^{3} / 6+\mathrm{x}^{4} / 24+\mathrm{x}^{5} / 120+\ldots\right) \cdot\left(x-x^{3} / 6+x^{5} / 120-x^{7} / 5040+x^{9} / 362880+\ldots\right)=$
$=x+x^{2}+x^{3} / 2+x^{4} / 6-x^{3} / 6-x^{4} / 6+\ldots=x+x^{2}+\left(\frac{1}{2}-\frac{1}{6}\right) x^{3}+\ldots=x+x^{2}+\frac{1}{3} x^{3}+\ldots$.
Answer: 1/3.

