Answer to the Question \#60709 - Math - Calculus

Question

The position of a particle at time t is given by s, Find the velocity $\mathrm{ds} / \mathrm{dt}$.

$$
2 s^{2}+\sqrt{ } s t-4=3 t
$$

Solution

Differentiate both sides of $2 s^{2}+\sqrt{s t}-4=3 t$ with respect to t :

1) $\left(2 s^{2}\right)^{\prime}+(\sqrt{s} t)^{\prime}-(4)^{\prime}=(3 t)^{\prime}$
2) Derivative of a constant is equal to $0:-(4)^{\prime}=0$.

Derivative of a composite function: $\left(2 s^{2}\right)^{\prime}=2 * 2 s * s^{\prime}$.
Derivative of the product of functions: $(\sqrt{s} t)^{\prime}=\sqrt{s}+t * \frac{1}{2 \sqrt{s}} * s^{\prime}$.
$(3 t)^{\prime}=3$.
3) $2 \cdot 2 s \cdot s^{\prime}+\sqrt{s}+t \cdot \frac{1}{2 \sqrt{s}} \cdot s^{\prime}=3$;

$$
\begin{aligned}
& \frac{d s}{d t}=s^{\prime} \\
& s^{\prime}\left(4 s+\frac{t}{2 \sqrt{s}}\right)=3-\sqrt{s} \\
& \frac{d s}{d t}=\frac{3-\sqrt{s}}{4 s+\frac{t}{2 \sqrt{s}}}=\frac{6 \sqrt{s}-2 s}{8 s^{2}+t}
\end{aligned}
$$

Answer: The velocity $\frac{d s}{d t}$ is equal to $\frac{6 \sqrt{s}-2 s}{8 s^{\frac{3}{2}}+t}$.

