Answer on Question #60656 - Math - Statistics and Probability

Question

a) The distribution of marks obtained by 500 candidates in a particular exam is given below:

Marks more than: 0 10 20 30 40 50 Number of candidates 500 460 400 200 100 30

Calculate the lower quartile marks. If 70% of the candidates pass in the exam, find the minimum marks obtained by a pass candidate. (5)

Solution

a)

The lower quartile marks:

the lower half of the data $\begin{cases} 0\\ 10 - The lower quartile value \end{cases}$	
the lower half of the data	10 – The lower quartile value
	20
Median	
	(30
the upper half of the data	40
	(50
$Q_1 = 10$	

If 70% of the candidates pass in the exam, find the minimum marks obtained by a pass candidate:

70% of the candidates $= 500 \cdot 70\% = 350$ candidates

400 (80%) people passed the exam with the assessment of 20 or above. That's why the the minimum marks of 350 candidates is 20.

The minimum marks obtained by a pass candidate: 20.

Answer:

<u>The lower quartile marks:</u> $Q_1 = 10$ The minimum marks obtained by a pass candidate: 20. b) An analysis of monthly wages paid to the workers of two firms A and B belonging to the same industry gives the following results:

Firm A Firm B Number of workers 500 600 Average daily wages `186 `175 Variance of distribution of wages 81 100

i) Which firm, A or B, has a large wage bill?ii) In which firm, A or B, is there greater variability in individual wages?iii) Find the average daily wage and the variance of the distribution of wages of all the workers in the firms A and B taken together.

i) Which firm, A or B, has a large wage bill?

Number of workers on Firm A: $N_{F_a} = 500$ Average daily wages on Firm A: $A_{F_a} = 186$ Wage bill on Firm A: $N_{F_a} \cdot A_{F_a} = 500 \cdot 186 = 93000$

Number of workers on Firm B: $N_{F_b} = 600$ Average daily wages on Firm B: $A_{F_b} = 175$ Wage bill on Firm B: $N_{F_b} \cdot A_{F_b} = 600 \cdot 175 = 105000$ 93000 < 105000So, firm B has larger wage bill.

ii) In which firm, A or B, is there greater variability in individual wages?

For firm A Variance of distribution of wages on Firm A: $V_{F_a} = 81$ Standard deviation: $\sigma = \sqrt{V_{F_a}} = 9$ Coefficient of variation $= \frac{\sigma}{A_{F_a}} \cdot 100 = \frac{9}{186} \cdot 100 = 4.8387$ For firm B Variance of distribution of wages on Firm B: $V_{F_b} = 100$ Standard deviation: $\sigma = \sqrt{V_{F_b}} = 10$ Coefficient of variation $= \frac{\sigma}{A_{F_b}} \cdot 100 = \frac{10}{175} \cdot 100 = 5.7143$

Variability of the firm depends upon coefficient of variation. Higher the coefficient of variation, higher the variability. Coefficient of variation of firm B is higher . Hence, firm B shows greater variability in individual wages. iii) Find the average daily wage and the variance of the distribution of wages of all the workers in the firms A and B taken together.

Average daily wage
$$\bar{x} = \frac{N_{F_a} \cdot A_{F_a} + N_{F_b} \cdot A_{F_b}}{N_{F_a} + N_{F_b}} = \frac{93000 + 105000}{500 + 600} = 180$$

Variance of the distribution of wages:

The standard deviations of two series containing n_1 , and n_2 , members are σ_1 , and σ_2 , respectively, being measure for their respective means $\overline{x_1}$, and $\overline{x_2}$. If the two series are grouped together as one series of $(n_1 + n_2)$ members, show that the standard deviation σ of this series, measured from its mean \overline{x} , is given by:

$$\sigma^{2} = \frac{n_{1}(\sigma_{1}^{2} + d_{1}^{2}) + n_{2}(\sigma_{2}^{2} + d_{2}^{2})}{(n_{1} + n_{2})}$$

where $d_1 = A_{F_a} - \bar{x}$ and $d_2 = A_{F_b} - \bar{x}$

This formula we obtain the following simplification of expression the mean square deviation of two series taken together:

$$\sigma^{2} = \frac{1}{n_{1} + n_{2}} \sum_{1}^{n_{1} + n_{2}} f(x - a)^{2}$$

$$d_{1} = 186 - 180 = 6 \implies d_{1}^{2} = 36$$

$$d_{2} = 175 - 180 = -5 \implies d_{2}^{2} = 25$$

$$\sigma^{2} = \frac{500(81 + 36) + 600(100 + 25)}{(500 + 600)} = \frac{58500 + 75000}{1100} = 121.36$$

Answer:

- i) firm B has larger wage bill.
- ii) firm B shows greater variability in individual wages.
- iii) Average daily wage $\bar{x} = 180$, variance of the distribution of wages $\sigma^2 = 121.36$