Answer on Question \#60637 - Math - Calculus Question

A ball is launched into the air from below a cliff, such that after t seconds its height above the cliff top is h metres, and is given by the equation
$h=-4.9 t^{\wedge} 2+19.6 t-9.6$.
Calculate, to the nearest metre, the maximum height the ball achieves above the cliff top.

Solution

The ball achieves the maximum height when its velocity equals 0 :

$$
v(t)=\frac{d h}{d t}=\left(-4.9 t^{2}+19.6 t-9.6\right)^{\prime}=-9.8 t+19.6=0 \rightarrow t=\frac{19.6}{9.8}=2 s
$$

Maximum height:
$h_{\max }=h(2)=-4.9 \cdot 2^{2}+19.6 \cdot 2-9.6=10 m$.

Answer: $h_{\max }=h(2)=10 \mathrm{~m}$.

