Answer on Question #60579 – Math – Trigonometry

Question

Evaluate cot 45° without using a calculator by using ratios in a reference triangle.

Solution

Given

$$\alpha = 45^{\circ}$$

$$\beta = 45^{\circ}$$

,

$$\gamma = 90^\circ$$
 ,

triangle $\triangle ABC$ is isosceles, because two angles α , β of the triangle being equal.

Then a = b, because triangle $\triangle ABC$ is isosceles. Triangle $\triangle ABC$ is right, because $\gamma = 90^{\circ}$.

By Pythagorean theorem,

$$c = \sqrt{a^2 + b^2} = \sqrt{a^2 + a^2} = a\sqrt{1 + 1} = a\sqrt{2}.$$

Using definitions of trigonometric functions

$$\sin \alpha = \frac{a}{c} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}},$$

 $\cos \alpha = \frac{b}{c} = \frac{a}{a\sqrt{2}} = \frac{1}{\sqrt{2}},$
 $\cot \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1.$

Given $\alpha = 45^{\circ}$, formula $\cot 45^{\circ} = 1$ has been proved.

Answer: $\cot 45^\circ = 1$.