Answer on Question #60572 – Math – Statistics and Probability

Question

• Determine the direction of the hypothesis test (one-sided left, one-sided right, bidirectional)

• Determine the test statistic (z* or t*) and the p-value for each of the following situations and

• Determine if they would cause the rejection of the null hypothesis if the confidence level was set at 95% in each case. (Hint: be wary of the sample size) [2 points each]:

a) Ho: $\mu = 50$ mL, Ha: $\mu \neq 50$ mL, sample mean = 48.1 mL, sample standard deviation = 5, n = 40 b) Ho: $\mu \le 8.4$ m3, Ha: $\mu > 8.4$ m3, sample mean = 10 m3, s = 3.5, n = 25 c) Ho: $\mu \ge 200$ C, Ha: $\mu < 200$ C, sample mean = 17.10C, s =4.60C, n = 12 d) Ho: $\mu = 357$ s, Ha: $\mu \ne 380$ s, sample mean = 410 s, s = 75, n = 40 e) Ho: $\mu \le 46$ units, Ha: $\mu > 46$ units, sample mean = 50 units, s = 9.5, n = 41

Solution

a) Bidirectional; test statistic (t*): $t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{48.1 - 50}{\frac{5}{\sqrt{40}}} = -2.40;$ $p - value is \ p = 0.021 < 0.05.$ Reject the null hypothesis.

b) One -sided right; test statistic (t*): $t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{10 - 8.4}{\frac{3.5}{\sqrt{25}}} = 2.29;$ p - value is p = 0.016 < 0.05.Reject the null hypothesis.

c) One –sided left;Test statistic (t*):

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{17.1 - 20}{\frac{4.6}{\sqrt{12}}} = -2.18;$$

p - value is $p = 0.026 < 0.05$.
Reject the null hypothesis.

d) Bidirectional; Test statistic (t*): $t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{410 - 380}{\frac{75}{\sqrt{40}}} = 2.53;$ p - value is p = 0.016 < 0.05.Reject the null hypothesis.

e) One -sided right; Test statistic (t*): $t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{50 - 46}{\frac{9.5}{\sqrt{41}}} = 2.70;$ p - value is p = 0.005 < 0.05.Reject the null hypothesis.

www.AssignmentExpert.com