Answer on Question \#60412 - Math - Abstract Algebra

Question

Prove that two conjugates have the same order.

Proof

We need to prove that g and $x g x^{-1}$ have the same order. It follows from the formula

$$
\left(x g x^{-1}\right)^{n}=x g^{n} x^{-1}
$$

which shows $\left(x g x^{-1}\right)^{n}=1$ if and only if $g^{n}=1$.
To see this, $\left(x g x^{-1}\right)^{n}=1$ implies
$\underbrace{x g x^{-1} \cdot x g x^{-1} \cdot x g x^{-1} \cdot \ldots \cdot x g x^{-1} x g x^{-1}}_{n}=x g\left(x^{-1} x\right) g\left(x^{-1} x\right) g \cdot \ldots \cdot g\left(x^{-1} x\right) g x^{-1}=x g 1 g 1 g \cdot \ldots$. $g 1 g x^{-1}=x g \cdot g \cdot g \cdot \ldots \cdot g \cdot g \cdot x^{-1}=x g^{n} x^{-1}=1$,
hence $x g^{n}=x$,
that is, $g^{n}=1$ by left-multiplying by x^{-1}.
The other direction of proof is clear.

It follows from this that the order of g divides the order of $x g x^{-1}$ and vice versa, so the orders of g and $x g x^{-1}$ must be equal.

