Answer on Question #60412 – Math – Abstract Algebra

Question

Prove that two conjugates have the same order.

Proof

We need to prove that g and xgx^{-1} have the same order. It follows from the formula

$$(xgx^{-1})^n = xg^nx^{-1},$$

which shows $(xgx^{-1})^n = 1$ if and only if $g^n = 1$.

To see this, $(xgx^{-1})^n = 1$ implies

hence $xg^n = x$,

that is, $g^n = 1$ by left-multiplying by x^{-1} .

The other direction of proof is clear.

It follows from this that the order of g divides the order of xgx^{-1} and vice versa, so the orders of g and xgx^{-1} must be equal.