Answer on Question \#60155 - Math - Abstract Algebra

Question

Prove that center of a group is itself a subgroup.

Proof

Let us start from the definition of a center of a group.
Definition Let G be a group with respect to the operation *. Then the center of G is the subset

$$
Z(G):=\{z \in G \mid \forall g \in G, z * g=g * z\} .
$$

Now we shall check the group axioms.

Closure

Let $z_{1}, z_{2} \in Z(G)$. Then $z_{1} * z_{2} \in Z(G)$ because
$\left(z_{1} * z_{2}\right) * g=z_{1} *\left(z_{2} * g\right)=z_{1} *\left(g * z_{2}\right)=\left(z_{1} * g\right) * z_{2}=\left(g * z_{1}\right) * z_{2}=g *\left(z_{1} * z_{2}\right)$, because $z_{1}, z_{2}, g \in G$, besides, $z_{1}, z_{2} \in Z(G)$.

Associativity

Obviously $\left(z_{1} * z_{2}\right) * z_{3}=z_{1} *\left(z_{2} * z_{3}\right)$ for all $z_{1}, z_{2}, z_{3} \in Z(G)$ because $z_{1}, z_{2}, z_{3} \in G$.

Identity element

The identity element $e \in G$ is also identity element of $Z(G)$ because $e * g=g * e=$ g for every $g \in G$.

Inverse element

The inverse element z^{-1} of the element $z \in Z(G)$ also belongs to $Z(G)$. Let us prove it. We start from the equality

$$
z * g=g * z, z \in Z(G), g \in G .
$$

Then we have
$z^{-1} * z * g=z^{-1} * g * z \Rightarrow g=z^{-1} * g * z \Rightarrow g * z^{-1}=z^{-1} * g$, that is, $z^{-1} * g=g * z^{-1}$, hence $z^{-1} \in Z(G)$ by definition of $Z(G)$.

For every $z \in Z(G)$ its inverse element z^{-1} also belongs to $Z(G)$.
All axioms are satisfied. This proves the statement.
Thus, the center of a group is itself a subgroup.

