## Answer on Question \#60154 - Math - Differential Equations

## Question

Find a homogeneous linear differential equation with constant coefficients whose general solution is given by

$$
y(x)=c_{1}+c_{2} e^{2 x} \cos 5 x+c_{3} e^{2 x} \sin 5 x .
$$

## Solution

General solution of a homogeneous linear differential equation with constant coefficients can be written as
$y(x)=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x}+c_{3} e^{\lambda_{3} x}$,
where $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \boldsymbol{\lambda}_{3}$ are the complex numbers.
The solution $y(x)=c_{1}+c_{2} e^{2 x} \cos 5 x+c_{3} e^{2 x} \sin 5 x$ gives us the hint, that
$\lambda_{1}=0, \lambda_{2}=2+5 i, \lambda_{3}=2-5 i$.
Let's write the characteristic equation:
$\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)=0$.
$(\lambda-0) \cdot(\lambda-(2+5 i)) \cdot(\lambda-(2-5 i))=$
$=\lambda \cdot((\lambda-2)-5 i) \cdot((\lambda-2)+5 i)=$
$=\lambda \cdot\left((\lambda-2)^{2}+25\right)=\lambda \cdot\left(\lambda^{2}-4 \lambda+4+25\right)=$
$=\lambda \cdot\left(\lambda^{2}-4 \lambda+4+25\right)=\lambda \cdot\left(\lambda^{2}-4 \lambda+29\right)=$
$=\lambda^{3}-4 \lambda^{2}+29 \lambda=0$.
As a solution of any linear differential equation with constant coefficients can be found in the form of $y=e^{\lambda x}, y^{\prime}(x)=\lambda e^{\lambda x}, y^{\prime \prime}(x)=\lambda^{2} e^{\lambda x}, y^{\prime \prime \prime}(x)=\lambda^{3} e^{\lambda x}$, it's obvious, that
$e^{\lambda x} \lambda^{3}-4 e^{\lambda r} \lambda^{2}+29 e^{\lambda x} \lambda=0$
and the differential equation is $y^{\prime \prime \prime}(x)-4 y^{\prime \prime}(x)+29 y^{\prime}(x)=0$.
Answer: $y^{\prime \prime \prime}(x)-4 y^{\prime \prime}(x)+29 y^{\prime}(x)=0$.

