Answer on Question \#60152 - Math - Differential Equations

Question

Use the method of variation of parameters to find a particular solution of the following differential equation

$$
y^{\prime \prime}-y=\frac{e^{x}}{e^{x}+1}
$$

Solve the given differential equation

Solution

First we need to find the general solution to the homogeneous equation

$$
y^{\prime \prime}-y=0
$$

The characteristic equation for this ODE is

$$
\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1
$$

Hence the general solution is

$$
y_{g}(x)=c_{1} e^{x}+c_{2} e^{-x} .
$$

We shall use the method of variation of parameters to find a solution of the form

$$
y_{g}(x)=y_{1}(x) e^{x}+y_{2}(x) e^{-x} .
$$

The variation of parameters formula gives the system

$$
\left\{\begin{array}{c}
y_{1}^{\prime}(x) e^{x}+y_{2}^{\prime}(x) e^{-x}=0 \\
y_{1}^{\prime}(x) e^{x}-y_{2}^{\prime}(x) e^{-x}=\frac{e^{x}}{e^{x}+1}
\end{array}\right.
$$

Adding the equations obtain

$$
\begin{aligned}
& 2 y_{1}^{\prime}(x) e^{x}=\frac{e^{x}}{e^{x}+1} \\
& y_{1}^{\prime}(x)=\frac{1}{2\left(e^{x}+1\right)}
\end{aligned}
$$

Integrating both sides with respect to x

$$
y_{1}(x)=\int \frac{d x}{2\left(e^{x}+1\right)}=\frac{1}{2}\left(x-\ln \left(e^{x}+1\right)\right)+C_{3} .
$$

Using the first equation $y_{1}{ }^{\prime}(x) e^{x}+y_{2}{ }^{\prime}(x) e^{-x}=0$ of the system and plugging $y_{1}^{\prime}(x)=\frac{1}{2\left(e^{x}+1\right)}$ gives

$$
y_{2}^{\prime}(x)=-y_{1}^{\prime}(x) e^{2 x}=-\frac{e^{2 x}}{2\left(e^{x}+1\right)}
$$

Integrating both sides with respect to x

$$
y_{2}(x)=\int\left(-\frac{e^{2 x}}{2\left(e^{x}+1\right)}\right) d x=-\frac{1}{2}\left(e^{x}-\ln \left(e^{x}+1\right)\right)+C_{4} .
$$

The general solution is

$$
\begin{aligned}
y_{g}(x)=\frac{e^{x}}{2}(x & \left.-\ln \left(e^{x}+1\right)+C_{3}\right)-\frac{e^{-x}}{2}\left(e^{x}-\ln \left(e^{x}+1\right)+C_{4}\right)= \\
& =C e^{x}+D e^{-x}+\frac{e^{x}}{2}\left(x-\ln \left(e^{x}+1\right)\right)-\frac{e^{-x}}{2}\left(e^{x}-\ln \left(e^{x}+1\right)\right) .
\end{aligned}
$$

Set $C=0, D=0$.
Hence a particular solution is given by

$$
y_{p}(x)=\frac{e^{x}}{2}\left(x-\ln \left(e^{x}+1\right)\right)-\frac{e^{-x}}{2}\left(e^{x}-\ln \left(e^{x}+1\right)\right) .
$$

Answer:

$y_{p}(x)=\frac{e^{x}}{2}\left(x-\ln \left(e^{x}+1\right)\right)-\frac{e^{-x}}{2}\left(e^{x}-\ln \left(e^{x}+1\right)\right) ;$
$y_{g}(x)=C e^{x}+D e^{-x}+\frac{e^{x}}{2}\left(x-\ln \left(e^{x}+1\right)\right)-\frac{e^{-x}}{2}\left(e^{x}-\ln \left(e^{x}+1\right)\right)$.

