Answer on Question \#60151 - Math - Differential Equations

Question

Solve the following differential equation $y^{\prime \prime}+y=\cos ^{2} x$.

Solution

The homogeneous second order linear differential equation is

$$
\begin{equation*}
y^{\prime \prime}+y=0 . \tag{1}
\end{equation*}
$$

It is a differential equation with constant coefficients.
The characteristic polynomial of the differential equation (1) is

$$
r^{2}+1=0
$$

There are two complex conjugate roots:

$$
r_{1}=i \text { and } r_{2}=-i .
$$

Hence the general solution of the homogeneous equation (1) is

$$
y_{h}=C_{1} \cos x+C_{2} \sin x,
$$

where C_{1}, C_{2} are arbitrary real constants.
Using power-reducing/half angle formulas $\cos ^{2} x=\frac{1+\cos (2 \mathrm{x})}{2}$ equation $y^{\prime \prime}+y=\cos ^{2} x$ can be rewritten in the following form:

$$
\begin{equation*}
y^{\prime \prime}+y=\frac{1}{2}+\frac{1}{2} \cos (2 x) \tag{2}
\end{equation*}
$$

A particular solution of (2) will be sought in the form

$$
\begin{equation*}
y_{p}=A+B \cos (2 x)+C \sin (2 x), \tag{3}
\end{equation*}
$$

where A, B, C are arbitrary real constants.
Differentiating (3) with respect to x get

$$
\begin{aligned}
& y_{p}^{\prime}=-2 B \sin (2 x)+2 C \cos (2 x) \\
& y_{p}^{\prime \prime}=-4 B \cos (2 x)-4 C \sin (2 x)
\end{aligned}
$$

Substituting these derivatives in equation (2) get

$$
-4 B \cos (2 x)-4 C \sin (2 x)+A+B \cos (2 x)+C \sin (2 x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)
$$

Equating the corresponding coefficients obtain

$$
\left\{\begin{array} { c }
{ A = \frac { 1 } { 2 } } \\
{ - 3 B = \frac { 1 } { 2 } } \\
{ - 3 C = 0 }
\end{array} \rightarrow \left\{\begin{array}{c}
A=\frac{1}{2} \\
B=-\frac{1}{6} \\
C=0
\end{array}\right.\right.
$$

Thus,

$$
y_{p}=\frac{1}{2}-\frac{1}{6} \cos (2 x) .
$$

The general solution of the equation (2) is the sum of a particular solution y_{p} of the equation (2) and the general solution y_{h} of the homogeneous equation (1).

Therefore,

$$
y=C_{1} \cos x+C_{2} \sin x+\frac{1}{2}-\frac{1}{6} \cos (2 x),
$$

where C_{1}, C_{2} are arbitrary real constants.
Answer: $y=C_{1} \cos x+C_{2} \sin x+\frac{1}{2}-\frac{1}{6} \cos (2 x)$.

