Answer on Question \#60045 - Math - Abstract Algebra

Question

Prove that
(i) $\mathrm{H}=\{\mathrm{a}+\mathrm{ib} \in \mathrm{C}, \mathrm{a} 2+\mathrm{b} 2=1\}$ is a subgroup of C , where C is complex number.
(ii) H be a set of real number $\mathrm{a}+\mathrm{b} \sqrt{ } 2$ where $\mathrm{a}, \mathrm{b} \in \mathrm{Q}$. Show that H be a subgroup of non-zero real no. under *.

Proof

(i) Let's prove that H is a subgroup under multiplication.

If $r 1=a 1+i b 1, r 2=a 2+i b 2 \in H$, then
$r 1^{*} \mathrm{r} 2=(\mathrm{a} 1+\mathrm{ib} 1)^{*}(\mathrm{a} 2+\mathrm{ib} 2)=\mathrm{a} 1^{*} \mathrm{a} 2+\mathrm{ib} 1^{*} \mathrm{a} 2+\mathrm{i} 1^{*} \mathrm{~b} 2-\mathrm{b} 1^{*} \mathrm{~b} 2=$ $=a 1^{*} a 2-b 1 * b 2+i(b 1 * a 2+a 1 * b 2),(a 1 * a 2-b 1 * b 2)^{\wedge} 2+\left(b 1 * a 2+a 1^{*} b 2\right)^{\wedge} 2=$ $=\left(a 1^{\wedge} 2+b 1^{\wedge} n 2\right)\left(a 2^{\wedge} 2+b 2^{\wedge} 2\right)=1$ and $r 1^{*} r^{2} \in \mathrm{H}$.
Since $(a 1-i b 1)(a 1+i b 1)=a 1^{\wedge} 2+b 1^{\wedge} 2=1$, then $r 1^{\wedge}(-1)=a 1-i b 1$ and $r 1 \in H$.
From these relations we obtain that H is a subgroup.
(ii) If $r 1=a 1+b 1 \operatorname{sqrt}(2), r 2=a 2+b 2 s q r t(2)$, then $r 1 * r 2=a 1 * a 2+2 b 1 * b 2+(a 1 * b 2+b 1 * a 2) s q r t(2) \in H$. Since $r 1^{\wedge}(-1)=-a 1 /\left(2 b 1^{\wedge} 2-a 1^{\wedge} 2\right)+b 1 /\left(2 b 1^{\wedge} 2-a 1^{\wedge} 2\right) \operatorname{sqrt}(2) \in H$ (r1^(-1)*r1 = 1/(2b1^2-a1^2) (-a1 + b1sqrt(2))(a1 + b1sqrt(2)) = 1/(2b1^2-a1^2) $\left.\left(2 b 1^{\wedge} 2-a 1^{\wedge} 2\right)=1\right)$, then H is a subgroup under *.

