Answer on Question #59972 - Math - Statistics and Probability

Question

For every n>1 the random variable Xn is exponential with parameter λn , where $\lambda n \rightarrow \lambda > 0$ and X is an exponential with parameter λ , then show that Xn converges in distribution to X

Solution

We say that $\{X_n\}$ converges in distribution to the random variable X if

$$\lim_{n\to\infty}F_n(t)=F(t),$$

at every value t where F is continuous cumulative distribution function.

$$F_n(t) = 1 - e^{-\lambda_n t}, \text{ for } t \ge 0$$
$$F(t) = 1 - e^{-\lambda t}, \text{ for } t \ge 0$$

 $\lim_{n\to\infty}F_n(t) = \lim_{n\to\infty}\left(1-e^{-\lambda_n t}\right) = 1 - \lim_{n\to\infty}\left(e^{-\lambda_n t}\right) = 1 - \exp\left(-t\lim_{n\to\infty}\lambda_n\right) = 1 - \exp(-t\lambda) = F(t),$

for
$$t \ge 0$$
.

Thus, $\{X_n\}$ converges in distribution to the random variable X.