Answer on Question \#59928 - Math - Abstract Algebra

Question

Prove that a non-commutative group has at least six elements.

Proof

Lagrange's theorem shows that any group of prime order is cyclic and therefore commutative. It is obvious that

1. If group has 1 element, it is commutative: $\mathbb{G}=\{e\}: e e=e$.
2. If group has 2 elements, it is cyclic of order 2 and commutative:

$$
\mathbb{G}=\{e, a\}: a^{2}=e, a=a^{-1}, a a^{-1}=e=a^{-1} a .
$$

3. If group has 3 elements it is cyclic of order 3 and commutative:
$\mathbb{G}=\{e, a, b\}: a^{3}=e, b=a^{-1}=a^{2}, a b=b a=e$.
4. If group has 4 elements, it is isomorphic either to
a) cyclic group of order 4: $\mathbb{G}=\{e, a, b, c\}: a^{4}=e, b=a^{2}, c=a^{3} a^{3}=a^{-1}$, $a b=b a=c, a c=c a=e, b c=c b=a ;$
or to
b) Klein four-group: $\mathbb{G}=\{e, a, b, c\}: a^{2}=b^{2}=c^{2}=e, a b=b a=c$, $a c=c a=b$, $b c=c b=a$.
5. If group has 5 elements, it is isomorphic to the cyclic group of order 5 , which is commutative:
$\mathbb{G}=\left\{e, a, a^{2}, a^{3}, a^{4}\right\}$.
Thus, if group has 5 or less elements, there is no possibility to define a non-commutative group operation.

If there are 6 or more elements, we have "enough space" to introduce a non-commutative group operation. The symmetric group S_{3} has 6 elements and it is non-commutative, because commutativity does not hold for all elements of S_{3}.

For example,
$\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$, that is, $\left(\begin{array}{lll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right) \neq\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}1 & 2\end{array}\right)$ (noncommutative elements);
though $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=e,\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)=e$, that is, $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ (commutative elements).

Answer: we have proved that group has to have at least 6 elements to be a non-commutative one.

