Answer on Question #59928 – Math – Abstract Algebra

Question

Prove that a non-commutative group has at least six elements.

Proof

Lagrange's theorem shows that any group of prime order is cyclic and therefore commutative. It is obvious that

- **1.** If group has 1 element, it is commutative: $\mathbb{G} = \{e\}: ee = e$.
- **2.** If group has 2 elements, it is cyclic of order 2 and commutative: $\mathbb{G} = \{e, a\}$: $a^2 = e$, $a = a^{-1}$, $aa^{-1} = e = a^{-1}a$.
- **3.** If group has 3 elements it is cyclic of order 3 and commutative: $\mathbb{G} = \{e, a, b\}: a^3 = e, b = a^{-1} = a^2, ab = ba = e.$
- **4.** If group has 4 elements, it is isomorphic either to
 - a) cyclic group of order 4: $\mathbb{G} = \{e, a, b, c\}$: $a^4 = e, b = a^2, c = a^3 a^3 = a^{-1}, ab = ba = c, ac = ca = e, bc = cb = a;$

or to

- **b)** Klein four-group: $\mathbb{G} = \{e, a, b, c\}$: $a^2 = b^2 = c^2 = e$, ab = ba = c, ac = ca = b, bc = cb = a.
- **5.** If group has 5 elements, it is isomorphic to the cyclic group of order 5, which is commutative:

 $\mathbb{G} = \{e, a, a^2, a^3, a^4\}.$

Thus, if group has 5 or less elements, there is no possibility to define a non-commutative group operation.

If there are 6 or more elements, we have "enough space" to introduce a non-commutative group operation. The symmetric group S_3 has 6 elements and it is non-commutative, because commutativity does not hold for all elements of S_3 .

For example,

 $(1 \ 2)(1 \ 3) = (1 \ 3 \ 2), (1 \ 3)(1 \ 2) = (1 \ 2 \ 3),$ that is, $(1 \ 2)(1 \ 3) \neq (1 \ 3)(1 \ 2)$ (non-commutative elements);

though $(1 \ 2 \ 3)(1 \ 3 \ 2) = e$, $(1 \ 3 \ 2)(1 \ 2 \ 3) = e$, that is, $(1 \ 2 \ 3)(1 \ 3 \ 2) = (1 \ 3 \ 2)(1 \ 2 \ 3)$ (commutative elements).

Answer: we have proved that group has to have at least 6 elements to be a non-commutative one.

www.AssignmentExpert.com