Answer on Question \#59927 - Math - Abstract Algebra

Question

Prove that every group of prime order is cyclic and hence abelian

Proof

Let p be a prime and G be a group such that $|\mathrm{G}|=\mathrm{p}$. Then G contains more than one element such that $g \neq e_{G}$ and $\langle g\rangle$ contains more than one element.

By the Lagrange's theorem, if $\langle g\rangle \leq G$ then the order of any element in a group divides the p . If a group has a prime order, than effectively the order of any non-identity element must equal the order of the group (since it can't be 1). And the group therefore has a generator.

Since $|\langle g\rangle|>1$ and $|\langle g\rangle|$ divides a prime $|\langle g\rangle|=p$. Hence $\langle g\rangle=G$. So, it is cyclic.
Thus, every group of prime order is cyclic.

G is called a commutative(or abelian) group if $\forall a, b \in G a * b=b * a$.
" G is cyclic" means there is $g \in G$ such that for every $x \in G$ there exists $n \in Z$ such that $x=g^{n}$. If $a, b \in G$ then there exists $k, m \in Z$ such that $a=g^{k}, b=g^{m}$.
Next,

$$
a b=g^{k} g^{m}=g^{k+m}=g^{m+k}=g^{m} g^{k}=b a
$$

So, G is abelian.
Thus, every cyclic group is abelian.

