Answer on Question #59781 - Math – Trigonometry

Question

How to solve equations of the form 4sinAcosA=1

Solution

It is known that

2sinAcosA =sin2A;

 $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2};$ $\sin\left(\frac{5\pi}{6}\right) = \frac{1}{2};$ $\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6};$

where $\arcsin(x)$ is the inverse sine function.

Besides, the period of the sine function is 2π , hence $sin(x) = sin(x + 2\pi) = sin(x + 2\pi n)$, where *n* is integer.

Next,

4sinAcosA = 1;

2 ·(2sinAcosA) = 1;

2sin2A = 1;

sin2A=1/2;

 $2A = \frac{\pi}{6} + 2\pi n \text{ and } 2A = \frac{5\pi}{6} + 2\pi n, \text{ where } n \text{ is integer;}$ $A = \frac{\pi}{12} + \pi n \text{ and } A = \frac{5\pi}{12} + \pi n, \text{ where } n \text{ is integer.}$

More general form of solution is

 $2A = (-1)^k \arcsin\left(\frac{1}{2}\right) + k\pi$, where k is integer;

 $2A = (-1)^k \frac{\pi}{6} + k\pi$, where k is integer;

 $A = (-1)^k \frac{\pi}{12} + \frac{k\pi}{2}$, where k is integer.

The equation 4sinAcosA=1 has only four roots in the range $[0; 2\pi]$:

$$\frac{\pi}{12}$$
 (or 15°), $\frac{5\pi}{12}$ (or 75°), $\frac{13\pi}{12}$ (or 195°), $\frac{17\pi}{12}$ (or 255°).

Answer: $A = (-1)^k \frac{\pi}{12} + \frac{k\pi}{2}$, where k is integer.

www.AssignmentExpert.com