Answer on Question \#59573 - Math - Calculus

Question

1. Given that $\boldsymbol{A}=\sin (t) \boldsymbol{i}+\cos (t) \boldsymbol{j}+t \boldsymbol{k}$, evaluate $\left|\frac{d^{2} \boldsymbol{A}}{d t^{2}}\right|$.
(a) 4
(b) 1
(c) 3
(d) 2

Solution

First of all, let us calculate $\frac{d \boldsymbol{A}}{d t}$:

$$
\frac{d \boldsymbol{A}}{d t}=\frac{d}{d t}(\sin (t)) \boldsymbol{i}+\frac{d}{d t}(\cos (t)) \boldsymbol{j}+\frac{d}{d t}(\cos (t)) \boldsymbol{k}=\cos (t) \boldsymbol{i}-\sin (t) \boldsymbol{j}+1 \cdot \boldsymbol{k} .
$$

For the second derivative we have:

$$
\frac{d^{2} \boldsymbol{A}}{d t^{2}}=\frac{d}{d t}(\cos (t)) \boldsymbol{i}+\frac{d}{d t}(-\sin (t)) \boldsymbol{j}+\frac{d}{d t}(1) \boldsymbol{k}=-\sin (t) \boldsymbol{i}-\cos (t) \boldsymbol{j}
$$

Therefore, the absolute values of the last vector is

$$
\left|\frac{d^{2} A}{d t^{2}}\right|=\sqrt{\sin ^{2}(t)+\cos ^{2}(t)}=1
$$

Answer: (b) $\left|\frac{d^{2} A}{d t^{2}}\right|=1$.

Question

2. A particle moves along the curve $x(t)=2 t^{2}, y(t)=t^{2}-4 t$ and $z(t)=3 t-5$, where t is the time. Find the components of the velocity at $t=1$ in the direction $\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k}$.
(a) $8 \sqrt{ }(14) / 7$
(b) $-2 \sqrt{ }(14) / 7$
(c) $3 \sqrt{ }(14) / 7$
(d) $-5 \sqrt{ }(14) / 7$

Solution

The position vector of the particle is given by

$$
\boldsymbol{r}(t)=x(t) \boldsymbol{i}+y(t) \boldsymbol{j}+z(t) \boldsymbol{k}
$$

Therefore, we can find the velocity of the particle as the first time derivative of the last expression:

$$
\begin{gathered}
\boldsymbol{v}(t)=\frac{d \boldsymbol{r}}{d t}=\frac{d x(t)}{d t} \boldsymbol{i}+\frac{d y(t)}{d t} \boldsymbol{j}+\frac{d z(t)}{d t} \boldsymbol{k}=\frac{d\left(2 t^{2}\right)}{d t} \boldsymbol{i}+\frac{d\left(t^{2}-4 t\right)}{d t} \boldsymbol{j}+\frac{d(3 t-5)}{d t} \boldsymbol{k} \\
=4 t \boldsymbol{i}+(2 t-4) \boldsymbol{j}+3 \boldsymbol{k}
\end{gathered}
$$

At the time $t=1$ it is equal to

$$
\boldsymbol{v}(1)=4 \boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}
$$

Now, let us consider the direction vector

$$
n=i-3 j+2 k
$$

The component of the velocity at $t=1$ in the direction $\boldsymbol{i}-3 \boldsymbol{j}+2 \boldsymbol{k}$ is equal to

$$
\frac{(\boldsymbol{v} \cdot \boldsymbol{n})}{|\boldsymbol{n}|}=\frac{4 \cdot 1+(-2) \cdot(-3)+3 \cdot 2}{\sqrt{1+(-3) \cdot(-3)+2 \cdot 2}}=\frac{16}{\sqrt{14}}=\frac{16 \sqrt{14}}{14}=\frac{8 \sqrt{14}}{7}
$$

Answer: (a) $\frac{8 \sqrt{14}}{7}$.

