## Answer on Question \#59528 - Math - Calculus

## Question

Determine the area under the curve $s=2 \cos 4 \theta$ in the range $\theta=0$ to $\pi / 4$ radians.

## Solution

Plot of $s=2 \cos 4 \theta$ is


In the polar coordinates we have
$s(0)=2 \cos (4 \cdot 0)=2$,
$s\left(\frac{\pi}{8}\right)=2 \cos \left(4 \cdot \frac{\pi}{8}\right)=2 \cos \left(\frac{\pi}{2}\right)=0$,
$s\left(\frac{\pi}{4}\right)=2 \cos \left(4 \cdot \frac{\pi}{4}\right)=2 \cos (\pi)=-2$,
Plot of $s=2 \cos 4 \theta, 0 \leq \theta \leq \frac{\pi}{4}$ is


The area under the curve $s=2 \cos 4 \theta$ in the range $\theta=0$ to $\pi / 4$ radians:

$$
\begin{gathered}
A=\frac{1}{2} \int_{0}^{\pi / 4} s^{2}(\theta) d \theta=\frac{1}{2} \int_{0}^{\pi / 4} 4(\cos 4 \theta)^{2} d \theta= \\
=2 \int_{0}^{\pi / 4} \frac{1+\cos 8 \theta}{2} d \theta=\int_{0}^{\pi / 4}(1+\cos 8 \theta) d \theta=\theta+\left.\frac{\sin 8 \theta}{8}\right|_{0} ^{\pi / 4}= \\
=\frac{\pi}{4}+\frac{\sin \left(8 \cdot \frac{\pi}{4}\right)}{8}-\left(0+\frac{\sin (8 \cdot 0)}{8}\right)= \\
=\frac{\pi}{4} \approx 0.78540 .
\end{gathered}
$$

Answer. $\frac{\pi}{4}$.

