ANSWER on Question \#59453 - Math - Differential Equations

QUESTION 4

Find the total differential of the function $u=x^{2} y-3 y$
a) $2 x d x+\left(x^{2}-3\right) d y$
b) $2 x y d x+x^{2} d y$
c) $2 x y d x+\left(x^{2}-3\right) d y$
d) $2 x y d x+\left(x^{3}-2\right) d y$

SOLUTION

By the definition, for any function $u(x, y)$

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y
$$

In our case

$$
u=x^{2} y-3 y \Leftrightarrow\left\{\begin{array}{c}
\frac{\partial u}{\partial x}=\frac{\partial}{\partial x}\left(x^{2} y-3 y\right)=2 x y \\
\frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y-3 y\right)=x^{2}-3
\end{array}\right.
$$

That is why

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=2 x y d x+\left(x^{2}-3\right) d y
$$

ANSWER: c) $2 x y d x+\left(x^{2}-3\right) d y$.

QUESTION 5

The total differential du of a function $u(x, y)=0$ is defined as
a) $\frac{\partial \mathrm{u}}{\partial \mathrm{x}} d x+\partial \mathrm{u} . \partial x d y=0$
b) $\frac{\partial u}{\partial x} d y+\frac{\partial u}{\partial y} d y=0$
c) $\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d x=0$
d) $\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0$

SOLUTION

$$
\begin{gathered}
u(x, y)=0 \Leftrightarrow d(u(x, y))=0 \\
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y \\
d u=0 \Leftrightarrow \frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0
\end{gathered}
$$

ANSWER : d) $\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0$.

QUESTION 6

A differential equation involving only a single independent variable is called \qquad equation.
a) extraordinary differential
b) ordinary differential
c) super-ordinary differential
d) partial differential

SOLUTION

By definition, the differential equation with one independent variable is called an ordinary differential equation

ANSWER : b) ordinary differential.

QUESTION 7

The homogeneous equation $\frac{d y}{d x}=x^{4}+x^{3} y+\frac{y^{4}}{3 x^{3} y}+y^{4}$ is of degree
a) first
b) second
c) third
d) fourth

SOLUTION

It is an ordinary differential equation, because we see only one independent variable x (the derivative is taken with respect to it) and one dependent function $y(x)$. By definition, the degree of differential equation is determined by the highest derivative.

Therefore, this equation is of first degree.

ANSWER : a) first.

