Answer on Question #59342 - Math - Trigonometry

Question **1.** Which value is a solution for the equation $tan \frac{x}{2} = 0$? π 3π

 $\frac{2}{\pi}$

2π

Solution

 $tan \frac{x}{2} = \frac{sin\frac{x}{2}}{cos\frac{x}{2}}$, then $tan \frac{x}{2} = 0$ when the numerator is equal to zero. We know $sin(\alpha) = 0$ when $\alpha = \pi \cdot n, n = 0, \pm 1, \pm 2, ...$ Then we equate $\frac{x}{2}$ to $\pi \cdot n$ and solve equation: $\frac{x}{2} = \pi \cdot n$ $x=2\pi\cdot n,$ hence 2π is a solution to the equation.

Answer: 2π .

Question

2. The value $\frac{5\pi}{4}$ is a solution for the equation $3\sqrt{2} \sec \theta + 7 = 1$? True False

Solution

Let's check if
$$\frac{5\pi}{4}$$
 is a solution. Substitute it into the equation:
 $3\sqrt{2} \sec \theta + 7 = 1$
 $3\sqrt{2} \sec \left(\frac{5\pi}{4}\right) + 7 = 1$
We know that $\sec \alpha = \frac{1}{\cos \alpha}$.
 $3\sqrt{2} \frac{1}{\cos\left(\frac{5\pi}{4}\right)} + 7 = 1$,
 $\cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$,
 $3\sqrt{2} \frac{1}{-\frac{\sqrt{2}}{2}} + 7 = 1$,

$$3\sqrt{2} \cdot \left(-\frac{2}{\sqrt{2}}\right) + 7 = 1,$$

-6 + 7 = 1, which is true. **Answer:** True.

Question

3. There is no solution to the equation cscx = -1. False True

Solution

Let's solve equation cscx = -1. We know $csc \propto = \frac{1}{\sin \alpha}$, then we can rewrite the equation as

$$\frac{1}{\sin x} = -1,$$

 $\sin x = -1,$ $x = \frac{3\pi}{2} + 2\pi n, n = 0, \pm 1, \pm 2, \dots$ We can see a solution exists.

Answer: False.