Answer on Question #59214 - Math - Calculus

Question

- (a) Differentiate the equation $\theta = 9t^2 2t^3$ with respect to t.
- **(b)** Differentiate the equation $y = 3 \sin 5t$ with respect to t.
- (c) Differentiate the equation $y = 2e^{6t}$ with respect to t.
- (d) Determine $\int x^7 dx$.
- (e) Determine $\int (5\sin 3t e^{3t}) dt$.

Solution

(a)
$$\frac{d\theta}{dt} = (9t^2 - 2t^3)' = 2 \cdot 9t - 3 \cdot 2t^2 = 18t - 6t^2;$$

(b)
$$\frac{dy}{dt} = (3\sin 5t)' = 3\cos(5t) \cdot 5 = 15\cos 5t;$$

(c)
$$\frac{dy}{dt} = (2e^{6t})' = 2e^{6t} \cdot 6 = 12e^{6t};$$

(d)
$$\int x^7 dx = \frac{x^8}{8} + C$$
, where C is an integration constant;

(e)
$$\int (5\sin 3t - e^{3t})dt = -\frac{5}{3}\cos 3t - \frac{1}{3}e^{3t} + C = -\frac{1}{3}(5\cos 3t + e^{3t}) + C$$
, where C is an integration constant.

Answer:

(a)
$$\frac{d\theta}{dt} = 18t - 6t^2$$
;

(b)
$$\frac{dy}{dt} = 15\cos 5t$$
;

(c)
$$\frac{dy}{dt} = 12e^{6t}$$
;

(d)
$$\int x^7 dx = \frac{x^8}{8} + C$$
;

(e)
$$\int (5\sin 3t - e^{3t})dt = -\frac{1}{3}(5\cos 3t + e^{3t}) + C$$
.