Answer on Question \#59070 - Math - Differential Equations

Question

3. Derive the differential equation associated with the primitive $y=A x^{\wedge} 3+B x^{\wedge} 2+C x+D$ where A, B, C and D are arbitrary constants.
(a) $D^{\wedge} 3 y / d x^{\wedge} 2=0$
(b) $d^{\wedge} 4 y / d x^{\wedge} 4+d^{\wedge} 3 y / d x^{\wedge} 3=0$
(c) $d^{\wedge} 3 y / d x^{\wedge} 3+d^{\wedge} 2 y / d x^{\wedge} 2=0$
(d) $d^{\wedge} 4 y / d x^{\wedge} 4=0$

Solution

$\frac{d^{4}}{d x^{4}}\left(A x^{3}+B x^{2}+C x+D\right)=0$, so the differential equation is $\frac{d^{4} y}{d x^{4}}=0$.
Answer: (d) $d^{\wedge} 4 y / d x^{\wedge} 4=0$.

Question

5. Derive the differential equation for the area bounded by the arc of a curve, the x - axis, and the two ordinates, one fixed and one variable, is equal to trice the length of the arc between the ordinates
(I) $y=2 \sqrt{ } 4+(d x / d y)^{\wedge} 2$
(II) $Y=V 1+\left(d^{\wedge} 2 y / d x^{\wedge} 2\right)^{\wedge} 2$
(III) $Y=2 \vee 1+(d y / d x)^{\wedge} 2$
(IV) $y=3 \vee 2+(d y / d x)^{\wedge} 2$

Solution

Area: $S=\int_{a}^{x} y(x) d x$. Length of arc: $L=\int_{a}^{x} \sqrt{1+y^{\prime}(x)^{2}} d x$.
So $\int_{a}^{x} y(x) d x=3 \int_{a}^{x} \sqrt{1+y(x)^{2}} d x \rightarrow \frac{d}{d x} \int_{a}^{x} y(x) d x=3 \frac{d}{d x} \int_{a}^{x} \sqrt{1+y^{\prime}(x)^{2}} d x \rightarrow$

$$
y=3 \sqrt{1+y^{\prime 2}}
$$

Answer: $y=3 \sqrt{1+y^{\prime 2}}$.

Question

6 Find the differential equation of all straight lines at a unit distance from the origin
(i) $\left.(x d y / d x-y)^{\wedge} 2=1 / 2\right)^{\wedge} 2$
(II) $(x d y / d x-y)^{\wedge} 2=1+(d y / d x)^{\wedge} 2$
(III) $(3 x d y / d x-y)^{\wedge} 2=3+(d y / d x)^{\wedge} 2$
(IV) $\left(2 x d^{\wedge} 2 y / d x^{\wedge} 2-y\right)^{\wedge} 2=1+(d y / d x)^{\wedge} 2$

Solution

Equation of the line: $y=a x+b$;
Distance from the line to origin: $d=\frac{|b|}{\sqrt{a^{2}+1}}=1 \rightarrow b= \pm \sqrt{a^{2}+1}$
So $y=a x \pm \sqrt{a^{2}+1} \rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(a x \pm \sqrt{a^{2}+1}\right) \rightarrow y^{\prime}=a$
and $y=y^{\prime} x \pm \sqrt{y^{\prime 2}+1} \rightarrow\left(y-x y^{\prime}\right)^{2}=y^{\prime 2}+1$
Answer: (II) $(x d y / d x-y)^{\wedge} 2=1+(d y / d x)^{\wedge} 2$

