Answer on Question \#59053 - Math - Differential Equations

Question

1. H grams of artificial sugar in water are being converted into dextrose at a rate which is proportional to the square of the amount unconverted. Find the differential equation expressing the rate of conversion after v minutes given that s grams is converted in v minutes and c being the constant of proportionality.
(a) $\mathrm{ds} / \mathrm{dv}=\mathrm{c}(\mathrm{H}-\mathrm{s}) 2$
(b) $\mathrm{ds} / \mathrm{dv}=\mathrm{c}(\mathrm{H}-\mathrm{s})^{\wedge} 2$
(c) $\mathrm{ds} / \mathrm{dv} /=(\mathrm{s}-\mathrm{H})^{\wedge} 2$
(d) $\mathrm{dv} / \mathrm{ds} /=\mathrm{c}(\mathrm{H}-\mathrm{s})$

Solution

Let amount converted be s , amount unconverted be H -s. Then $\frac{d s}{d v}=c(H-s)^{2}$.
Answer: (b) $\frac{d s}{d v}=c(H-s)^{2}$.

Question

2. A vehicle of mass moves along a straight line (the - axis) while subject to a force indirectly proportional to its displacement x from a fixed point O in its path and 2) a resisting force proportional to its acceleration. Express the total force as a differential equation.
(a) $7 \mathrm{md}^{\wedge} 2 / x d t^{\wedge} 2=k 1 / t-k 2 d x / d t$
(b) $M d^{\wedge} 2 x / d t^{\wedge} 2=-k 1 / t-k 2 d^{\wedge} 2 x / d t^{\wedge} 2$
(c) $m d^{\wedge} 2 x / d t^{\wedge} 2=-k 1 / x-k 2 d^{\wedge} 2 x / d t^{\wedge} 2$
(d) $M d^{\wedge}-2 x / d t^{\wedge} 2=-2 k 1 / x-k 2 d^{\wedge} 2 x / d t^{\wedge} 2$

Solution

$F=m a$.
$F=-\frac{k_{1}}{x}-k_{2} a ; \quad a=\frac{d^{2} x}{d t^{2}}$.
Thus, $m \frac{d^{2} x}{d t^{2}}=-\frac{k_{1}}{x}-k_{2} \frac{d^{2} x}{d t^{2}}$.
Answer: (c) $m \frac{d^{2} x}{d t^{2}}=-\frac{k_{1}}{x}-k_{2} \frac{d^{2} x}{d t^{2}}$.

