Answer on Question #58981 – Math – Abstract Algebra

Question

Prove that

- i) $< \mathbb{Z}, +>$ is a group,
- ii) $\mathbb{H} = < 5\mathbb{Z}, +>$ is a subgroup of $\mathbb{G} = <\mathbb{Z}, +>$

Solution

- i) Given any integer numbers $a \in \mathbb{Z}$, $b \in \mathbb{Z}$, we have to check group axioms w.r.t addition:
- 1. Closure:

We have a + b = c, where $c \in \mathbb{Z}$ is some integer. Axiom is satisfied.

2. Identity element:

We have a + 0 = 0 + a = a. Thus, identity element is e = 0. Axiom is satisfied.

3. Inverse element:

We have a + (-a) = (-a) + a = e. Thus, the inverse element is $a^{-1} = -a$.

Axiom is satisfied.

4. Associativity:

As a + (b + c) = (a + b) + c is obviously satisfied for any integers: $a \in \mathbb{Z}, b \in \mathbb{Z}, c \in \mathbb{Z}$. Axiom is satisfied.

Therefore, integer numbers satisfy all group axioms w.r.t addition.

ii) Now let us consider $\mathbb{H} = < 5\mathbb{Z}, +>$. Since $\mathbb{H} \subset \mathbb{Z}$, to prove that $\mathbb{H} = < 5\mathbb{Z}, +>$ is a subgroup of $<\mathbb{Z}, +>$, we have to prove that $<\mathbb{H}, +>$ forms a group, i.e. we must check group axioms.

1. Closure:

 $a \in \mathbb{H}$, a = 5n, $n = 0, \pm 1, \pm 2, ...$ $b \in \mathbb{H}$, a = 5m, $m = 0, \pm 1, \pm 2, ...$

Then

$$a+b=5n+5m=5(n+m) \in \mathbb{H}$$

Closure axiom is satisfied.

2.Identity element:

We have 5n + 0 = 0 + 5n = 5n. Thus, the identity element is $e = 0 \in \mathbb{H}$. Axiom is satisfied.

3.Inverse element:

We have 5n + (-5n) = (-5n) + 5n = e. Thus, the inverse element is $(5n)^{-1} = -5n \in \mathbb{H}$.

Axiom is satisfied.

4.Associativity:

As 5n + (5m + 5k) = (5n + 5m) + 5k, where c = 5k, $k = 0, \pm 1, \pm 2, ...,$ associativity is obviously satisfied for any integers $n \in \mathbb{Z}, m \in \mathbb{Z}, k \in \mathbb{Z}$. Axiom is satisfied.

Therefore, we proved that $\mathbb{H} = < 5\mathbb{Z}, +>$ is a subgroup of $\mathbb{G} = <\mathbb{Z}, +>$.

Answer: $< \mathbb{Z}$, +> is a group, $\mathbb{H} = <5\mathbb{Z}$, +> is a subgroup of $\mathbb{G} = <\mathbb{Z}$, +>.

www.AssignmentExpert.com