Answer on Question \#58981 - Math - Abstract Algebra

Question

Prove that
i) $<\mathbb{Z},+>$ is a group,
ii) $\quad \mathbb{H}=<5 \mathbb{Z},+>$ is a subgroup of $\mathbb{G}=<\mathbb{Z},+>$

Solution

i) Given any integer numbers $a \in \mathbb{Z}, b \in \mathbb{Z}$, we have to check group axioms w.r.t addition:

1. Closure:

We have $a+b=c$, where $c \in \mathbb{Z}$ is some integer. Axiom is satisfied.
2. Identity element:

We have $a+0=0+a=a$. Thus, identity element is $e=0$. Axiom is satisfied.
3. Inverse element:

We have $a+(-a)=(-a)+a=e$. Thus, the inverse element is $a^{-1}=-a$. Axiom is satisfied.
4. Associativity:

As $a+(b+c)=(a+b)+c$ is obviously satisfied for any integers: $a \in \mathbb{Z}, b \in \mathbb{Z}, c \in \mathbb{Z}$. Axiom is satisfied.

Therefore, integer numbers satisfy all group axioms w.r.t addition.
ii) Now let us consider $\mathbb{H}=<5 \mathbb{Z},+>$. Since $\mathbb{H} \subset \mathbb{Z}$, to prove that $\mathbb{H}=<5 \mathbb{Z},+>$ is a subgroup of $<\mathbb{Z},+>$, we have to prove that $<\mathbb{H},+>$ forms a group, i.e. we must check group axioms.

1. Closure:

$$
\begin{array}{ll}
a \in \mathbb{H}, & a=5 n, \quad n=0, \pm 1, \pm 2, \ldots \\
b \in \mathbb{H}, & a=5 m, \quad m=0, \pm 1, \pm 2, \ldots
\end{array}
$$

Then

$$
a+b=5 n+5 m=5(n+m) \in \mathbb{H}
$$

Closure axiom is satisfied.
2.Identity element:

We have $5 n+0=0+5 n=5 n$. Thus, the identity element is $e=0 \in \mathbb{H}$. Axiom is satisfied.
3.Inverse element:

We have $5 n+(-5 n)=(-5 n)+5 n=e$. Thus, the inverse element is $(5 n)^{-1}=-5 n \in \mathbb{H}$.

Axiom is satisfied.
4.Associativity:

As $5 n+(5 m+5 k)=(5 n+5 m)+5 k$, where $c=5 k, k=0, \pm 1, \pm 2, \ldots$, associativity is obviously satisfied for any integers $n \in \mathbb{Z}, m \in \mathbb{Z}, k \in \mathbb{Z}$. Axiom is satisfied.

Therefore, we proved that $\mathbb{H}=<5 \mathbb{Z},+>$ is a subgroup of $\mathbb{G}=<\mathbb{Z},+>$.
Answer: $<\mathbb{Z},+>$ is a group, $\mathbb{H}=<5 \mathbb{Z},+>$ is a subgroup of $\mathbb{G}=<\mathbb{Z},+>$.

