Answer on Question \#58980 - Math - Abstract Algebra

Question

Do the non-zero positive rational numbers form a group with respect to multiplication?

Solution

Let $G=\{x: x>0, x \in \mathbb{Q}\}$.
Let us check the group axioms:
Closure. Let $a, b \in G$. Then $a \cdot b>0$, and obviously $a \cdot b \in \mathbb{Q}$.
Associativity. Obviously $(a \cdot b) \cdot c=a \cdot(b \cdot c)=a b c$ for all $a, b, c \in G$.

Identity element. There exists an element $e:=1 \in G: 1 \cdot a=a \cdot 1=a$ for all $a \in G$.

Inverse element. For each $a \in G$ there exists an element $a^{-1}:=\frac{1}{a} \in G\left(\frac{1}{a}>0, \frac{1}{a} \in \mathbb{Q}\right)$ such that $a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1=e$.

All the axioms are satisfied so the non-zero positive rational numbers form a group with respect to multiplication.

Answer. Yes.

Question

Do the even integer form a group with respect to addition?

Solution

Let $G=\{x: x \in \mathbb{Z}, 2 \mid x\}$. Let us check the group axioms:
Closure. Let $a=2 k_{1} \in G, b=2 k_{2} \in G$. Then $a+b=2 k_{1}+2 k_{2}=2\left(k_{1}+k_{2}\right) \in G$.
Associativity. Obviously $(a+b)+c=a+(b+c)=a+b+c$ for all $a, b, c \in G$.
Identity element. There exists an element $e:=0 \in G: 0+a=a+0=a$ for all $a \in G$.
Inverse element. For each $a \in G$ there exists an element $a^{-1}:=-a \in G(-a \in \mathbb{Z}, 2 \mid(-a))$ such that
$a+(-a)=-a+a=0=e$.

All the axioms are satisfied so the even integer form a group with respect to addition.
Answer. Yes.

