Answer on Question \#58979 - Math - Abstract Algebra

Question

Do the odd integers form a group w.r.t addition?

Solution

Since odd integer a, b can be written as follows:

$$
a=2 n+1, \quad b=2 m+1, \quad n, m=0, \pm 1, \pm 2, \ldots
$$

we obtain

$$
a+b=2(n+m+1) \neq 2 k+1, \quad k=0, \pm 1, \pm 2, \ldots
$$

Therefore, addition of two odd integers yields even integer. Closure axiom is not satisfied, therefore the odd integers do not form a group w.r.t addition.

Answer: the odd integers do not form a group w.r.t addition.

Question

Do the non-zero positive real numbers form a group w.r.t multiplication?

Solution

Given any non-zero positive real numbers: $a \in R^{+}, b \in R^{+}$.
We have to check group axioms w.r.t multiplication:

1. Closure:

We have $a \cdot b=c$, where $c \in R^{+}$is some non-zero positive real number.
Axiom is satisfied.
2. Identity element:

We have $a \cdot 1=1 \cdot a=a$. Thus, identity element is $e=1$. Axiom is satisfied.
3. Inverse element:

We have $a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=e$. Thus inverse element is $a^{-1}=\frac{1}{a}$. Axiom is satisfied.
4. Associativity

As $a \cdot(b \cdot c)=(a \cdot b) \cdot c$ is obviously satisfied for any $a \in R^{+}, b \in R^{+}, c \in R^{+}$.
Axiom is satisfied.
Therefore, non-zero positive real numbers satisfy all group axioms w.r.t multiplication.
The non-zero positive real numbers form a group w.r.t multiplication.
Answer: The non-zero positive real numbers form a group w.r.t multiplication.

