Answer on Question #58930 - Math - Trigonometry

Question

For the simple harmonic motion equation $d = 5\sin\left(\frac{\pi}{4}t\right)$, what is the frequency?

If necessary, use the slash (/) to denote a fraction._____

Solution

$$d = 5\sin\left(\frac{\pi}{4}t\right) = a\sin(\omega t),$$

$$\omega = \frac{\pi}{4}$$
.

Frequency is
$$f = \frac{\omega}{2\pi} = \frac{\pi}{4} \cdot \frac{1}{2\pi} = \frac{1}{8} = 1/8 \ s^{-1}$$
.

Answer: $1/8 \ s^{-1}$.

Question

Find a model for simple harmonic motion if the position at t = 0 is 0, the amplitude is 5 centimeters, and the period is 4 seconds.

$$d = 5\sin(4t)$$

$$d = 4\sin(5t)$$

$$d = 5\cos\left(\frac{\pi}{2}t\right)$$

$$d = 5\sin\left(\frac{\pi}{2}t\right)$$

Solution

The formula for simple harmonic motion is

$$d = Asin(\omega t + \varphi),$$

where the amplitude is A=5 centimeters, the period is $T=\frac{2\pi}{\omega}=4$ seconds, hence $\omega=\frac{2\pi}{T}=\frac{2\pi}{4}=\frac{\pi}{2}\,s^{-1}$.

It is given that $d(0) = 0 \Rightarrow Asin(\omega \cdot 0 + \varphi) = 0 \Rightarrow Asin(\varphi) = 0$, hence $\varphi = 0$ or $\varphi = \pi$.

Thus,
$$d = 5sin\left(\frac{\pi}{2}t\right)$$
.

Answer: $d = 5sin\left(\frac{\pi}{2}t\right)$.

Question

Find a model for simple harmonic motion if the position at t = 0 is 6, the amplitude is 6 centimeters, and the period is 4 seconds.

$$d = 4\sin\left(\frac{\pi}{3}t\right)$$

$$d = 6\cos(4t)$$

$$d = 4\sin(6t)$$

$$d = 6\cos\left(\frac{\pi}{2}t\right)$$

Solution

The formula for simple harmonic motion is

$$d = Asin(\omega t + \varphi),$$

where the amplitude is A=6 centimeters, the period is $T=\frac{2\pi}{\omega}=4$ seconds, hence $\omega=\frac{2\pi}{T}=\frac{2\pi}{4}=\frac{\pi}{2}\,s^{-1}$.

It is given that $d(0) = 6 \Rightarrow Asin(\omega \cdot 0 + \varphi) = 6 \Rightarrow 6sin(\varphi) = 6$, hence $\varphi = \frac{\pi}{2}$.

Thus,
$$d = 6sin\left(\frac{\pi}{2}t + \frac{\pi}{2}\right) = 6cos\left(\frac{\pi}{2}t\right)$$
.

Answer:
$$d = 6\cos\left(\frac{\pi}{2}t\right)$$
.