
Answer on Question #58895 – Math – Trigonometry

Question

1. Just the answer please.

Solution

$$\cos\left(\frac{3\pi}{4}\right) = \cos\left(\frac{4\pi - \pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}.$$

Answer: $\cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}$.

Question

2. Just the answer please

Check all that apply. $\frac{\pi}{6}$ is the reference angle for:	
<u>3π</u> 6	
<u>8π</u> 6	
5π 6	
13 π 6	

Solution

It is necessary to subtract 360° (2π radians) from the angle greater than 360° (2π radians) until it lies between 0 and 360° (2π radians).

It is necessary to add 360° (2π radians) to the negative angle until it lies between 0 and 360° (2π radians). Next step is to define which quadrant the angle is in.

Depending on the quadrant, the reference angle is given in the following table.

Quadrant	Reference angle for α° ; β radians
1	α° ; β radians
2	$180^{\circ} - \alpha^{\circ}$; $(\pi - \beta)$ radians
3	$lpha^{\circ}-180^{\circ}$; ($eta-\pi$) radians
4	$360^{\circ} - \alpha^{\circ}$; (2 $\pi - \beta$) radians

Angles $\frac{8\pi}{6}$, $\frac{5\pi}{6}$ lie in the third and second quadrants respectively. Angle $\frac{13\pi}{6}$ is greater than 2π .

a)
$$\frac{3\pi}{6} = \frac{\pi}{2}$$
;
b) $\frac{8\pi}{6} = \frac{4\pi}{3} = \frac{3\pi + \pi}{3} = \pi + \frac{\pi}{3}$;
c) $\frac{5\pi}{6} = \frac{6\pi - \pi}{6} = \pi - \frac{\pi}{6}$;
d) $\frac{13\pi}{6} = \frac{12\pi + \pi}{6} = 2\pi + \frac{\pi}{6}$.

Accordingly, $\frac{\pi}{6}$ is the reference angle for $\frac{5\pi}{6}$ and $\frac{13\pi}{6}$.

Answer:

 $\frac{\pi}{6}$ is the reference angle for $\frac{5\pi}{6}$ and $\frac{13\pi}{6}$.