Answer on Question \#58883 - Math - Differential Equations

Question

5. Derive the differential equation for the area bounded by the arc of a curve, the x - axis, and the two ordinates, one fixed and one variable, is equal to thrice the length of the arc between the ordinates.

Solution

The equation of area:
$S=\int_{x_{0}}^{x} y(x) d x$,
where x_{0} is a fixed ordinate, x is variable ordinate.
The equation of arc length:
$L=\int_{x_{0}}^{x} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x$
It is given that $S=3 L$, which is equivalent to

$$
\begin{equation*}
\int_{x_{0}}^{x} y(x) d x=3 \int_{x_{0}}^{x} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x \tag{1}
\end{equation*}
$$

Differentiate both sides of (1) with respect to x :

$$
\begin{equation*}
y(x)=3 \sqrt{1+\left(y^{\prime}(x)\right)^{2}} \tag{2}
\end{equation*}
$$

Differentiating both sides of (2) with respect to x derive the differential equation:
$y^{\prime}=\frac{6 y^{\prime} y^{\prime \prime}}{2 \sqrt{1+\left(y^{\prime}(x)\right)^{2}}}$

$$
\begin{equation*}
y^{\prime}=\frac{3 y^{\prime \prime \prime \prime}}{\sqrt{1+\left(y^{\prime}(x)\right)^{2}}} \tag{3}
\end{equation*}
$$

If $y^{\prime}=0$, then $y=C$ is a straight line, where C is an arbitrary constant;
$S=\int_{x_{0}}^{x} y(x) d x=\int_{x_{0}}^{x} C d x=C\left(x-x_{0}\right)$,
$L=\int_{x_{0}}^{x} \sqrt{1+\left(y^{\prime}(x)\right)^{2}} d x=\int_{x_{0}}^{x} \sqrt{1+\left(C^{\prime}\right)^{2}} d x=\int_{x_{0}}^{x} d x=\left(x-x_{0}\right)$.
If $S=3 L$, then $C\left(x-x_{0}\right)=3\left(x-x_{0}\right)$, hence $C=3$ and $y=3$, its differential equation is $y^{\prime}=0$.

If $y^{\prime} \neq 0$, then we do not deal with a straight line, $y=y(x)$ represents a curve.
Divide both sides of (3) by y^{\prime} :
$1=\frac{3 y^{\prime \prime}}{\sqrt{1+\left(y^{\prime}(x)\right)^{2}}}$
$\sqrt{1+\left(y^{\prime}(x)\right)^{2}}=3 y^{\prime \prime}$
Square both sides:
$\left(y^{\prime}\right)^{2}+1=9\left(y^{\prime \prime}\right)^{2}$
Answer: $\left(y^{\prime}\right)^{2}+1=9\left(y^{\prime \prime}\right)^{2}$

Question

6. Find the differential equation of all straight lines at a unit distance from the origin.

Solution

The equation of a circle centered in the origin and the radius of 1:
$x^{2}+y^{2}=1$
Differentiating both sides with respect to x derive the differential equation:
$2 y y^{\prime}=-2 x ;$
$y^{\prime}=-\frac{x}{y}$ is the slope of the lines at distance 1 from the origin.
From $x^{2}+y^{2}=1$ it follows that $y=\sqrt{1-x^{2}}$ and using $y^{\prime}=-\frac{x}{y}$ we come to $y^{\prime}=-\frac{x}{\sqrt{1-x^{2}}}$.

Answer: $y^{\prime}=-\frac{x}{\sqrt{1-x^{2}}}$.

Question

7. Obtain the differential equation associated with the given primitive
$\ln y=A x^{2}+B$
A and B being arbitrary constant.

Solution

Differentiate both sides of $\ln y=A x^{2}+B$ with respect to x and derive the equation:
$\frac{y^{\prime}}{y}=2 A x$
$\frac{y^{\prime}}{x y}=2 A$
Take the logarithm:
$\ln y^{\prime}-\ln x-\ln y=\ln 2 A$
Differentiate both sides of the previous formula with respect to x :
$\frac{y \prime \prime}{y^{\prime}}-\frac{1}{x}-\frac{y^{\prime}}{y}=0$.
Answer: $\frac{y \prime \prime}{y^{\prime}}-\frac{1}{x}-\frac{y^{\prime}}{y}=0$.

