## ANSWER on Question \#58667 - Math - Differential Equations

## QUESTION

(25 marks) Find $\alpha>0$ such that $y_{1}(x)=x^{\alpha}$ is a solution of the following differential equation:

$$
\begin{equation*}
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0, \quad x \in(0 ;+\infty) \tag{1}
\end{equation*}
$$

Solve the given differential equation.

## SOLUTION

If $y_{1}(x)=x^{\alpha}$ is a solution of the differential equation (1), then

$$
\begin{gathered}
y_{1}^{\prime \prime}-\frac{y_{1}^{\prime}}{x}+\frac{y_{1}}{x^{2}}=0 \\
y_{1}^{\prime \prime}-\frac{y_{1}^{\prime}}{x}+\frac{y_{1}}{x^{2}}=\alpha(\alpha-1) x^{\alpha-2}-\frac{\alpha x^{\alpha-1}}{x}+\frac{x^{\alpha}}{x^{2}} \\
=\alpha(\alpha-1) x^{\alpha-2}-\alpha x^{\alpha-2}+x^{\alpha-2}=0 \\
(\alpha(\alpha-1)-\alpha+1) x^{\alpha-2}=0 \rightarrow \alpha(\alpha-1)-\alpha+1=0 \\
\alpha(\alpha-1)-\alpha+1=\alpha^{2}-\alpha-\alpha+1=\alpha^{2}-2 \alpha+1 \\
=(\alpha-1)^{2}=0 \rightarrow \alpha=1
\end{gathered}
$$

$y_{1}(x)=x$ is the first solution of the differential equation (1).
It follows from Liouville's formula that the second solution is given by

$$
\begin{aligned}
& y_{2}(x)=y_{1} \int \frac{e^{-\int p(x) d x}}{y_{1}^{2}} d x=x \int \frac{e^{-\int \frac{-1}{x} d x}}{x^{2}} d x=x \int \frac{e^{\ln (x)}}{x^{2}} d x=x \int \frac{x}{x^{2}} d x= \\
= & x \int \frac{1}{x} d x=x \ln (x)
\end{aligned}
$$

The general solution of the differential equation (1) is

$$
y(x)=C_{1} y_{1}(x)+C_{2} y_{2}(x)=C_{1} x+C_{2} x \ln (x)
$$

Answer: $\alpha=1 ; y(x)=C_{1} x+C_{2} x \ln (x)$.

