Answer on Question \#58666 - Math - Differential Equations

Question

$y^{\prime \prime}-3 y^{\prime}=8 e^{3 x}+4 \sin x$.

Solution

The general solution will be the sum of the complementary solution y_{0} and a particular solution y^{*} :

$$
y=y_{0}+y^{*}
$$

Solving the characteristic equation

$$
k^{2}-3 k=0
$$

gives

$$
k_{1}=0, k_{2}=3 .
$$

Then the solution y_{0} of the differential equation $y^{\prime \prime}-3 y^{\prime}=0$ is

$$
y_{0}=C_{1}+C_{2} e^{3 x} .
$$

Find a particular solution y^{*} of the differential equation

$$
y^{\prime \prime}-3 y^{\prime}=8 e^{3 x}+4 \sin x
$$

by the method of undetermined coefficients:

$$
y^{*}=x A e^{3 x}+B \cos x+C \sin x
$$

Solve for unknown constants A, B, C :
$y^{* \prime}=A e^{3 x}+3 A x e^{3 x}-B \sin x+C \cos x ;$
$y^{* \prime \prime}=3 A e^{3 x}+3 A e^{3 x}+9 x A e^{3 x}-B \cos x-C \sin x=6 A e^{3 x}+9 x A e^{3 x}-B \cos x-C \sin x$.
Plug a particular solution into the differential equation:
$6 A e^{3 x}+9 x A e^{3 x}-B \cos x-C \sin x-3\left(A e^{3 x}+3 A x e^{3 x}-B \sin x+C \cos x\right)=8 e^{3 x}+4 \sin x$.
$3 A e^{3 x}+(-B-3 C) \cos x+(3 B-C) \sin x=8 e^{3 x}+4 \sin x$.
Equating like terms gives the system of equations:

$$
\left\{\begin{array} { c }
{ 3 A = 8 , } \\
{ - B - 3 C = 0 } \\
{ 3 B - C = 4 . }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ A = \frac { 8 } { 3 } } \\
{ B = - 3 C } \\
{ - 9 C - C = 4 }
\end{array} \Rightarrow \left\{\begin{array}{c}
A=\frac{8}{3} \\
B=-3 \cdot\left(-\frac{2}{5}\right)=\frac{6}{5} \\
C=-\frac{4}{10}=-\frac{2}{5}
\end{array}\right.\right.\right.
$$

hence

$$
y^{*}=\frac{8}{3} e^{3 x}+\frac{6}{5} \cos x-\frac{2}{5} \sin x .
$$

Then the general solution of $y^{\prime \prime}-3 y^{\prime}=8 e^{3 x}+4 \sin x$ is

$$
y=y_{0}+y^{*}=C_{1}+C_{2} e^{3 x}+\frac{8}{3} e^{3 x}+\frac{6}{5} \cos x-\frac{2}{5} \sin x .
$$

Answer: $y=C_{1}+C_{2} e^{3 x}+\frac{8}{3} e^{3 x}+\frac{6}{5} \cos x-\frac{2}{5} \sin x$.

