Answer on Question \#58664 - Math - Differential Equations

Question

Solve the intital value problem

$$
(\cos y) d y / d x-\sin y=x, y(0)=0
$$

Solution

1) We have an equation

$$
\cos y \cdot y^{\prime}-\sin y=x
$$

that is,

$$
(\sin y)^{\prime}-\sin y=x
$$

Denote

$$
u=\sin y
$$

We get a linear equation with respect to u :

$$
\begin{equation*}
u^{\prime}-u=x . \tag{1}
\end{equation*}
$$

2) Multiplying the equation (1) by e^{-x} we have

$$
e^{-x} u^{\prime}-e^{-x} u=x e^{-x}
$$

which is equivalent to

$$
\left(e^{-x} u\right)^{\prime}=x e^{-x}
$$

Integrating both parts with respect to x

$$
e^{-x} u=\int x e^{-x} d x+C
$$

hence

$$
e^{-x} u=-x e^{-x}-e^{-x}+C
$$

and multiplying the equality by e^{x}
we get

$$
u=-x-1+C e^{x}
$$

3) Substituting $u=\sin x$ we have

$$
\sin y=-x-1+C e^{x}
$$

and using initial conditions $x=0, y=0$ we get $C=1$.
Finally obtain

$$
\sin y=-x-1+e^{x} .
$$

Answer: $\sin y=-x-1+e^{x}$.

