Question

Solve the intital value problem

(cosy)dy/dx-siny=x,y(0)=0

Solution

1) We have an equation

that is,

 $(\sin y)' - \sin y = x.$

 $\cos y \cdot y' - \sin y = x,$

Denote

 $u = \sin y$.

We get a linear equation with respect to u:

$$u'-u=x. \tag{1}$$

2) Multiplying the equation (1) by e^{-x} we have

$$e^{-x}u' - e^{-x}u = xe^{-x}$$
,

which is equivalent to

$$(e^{-x}u)'=xe^{-x}.$$

Integrating both parts with respect to x

 $e^{-x}u = \int x e^{-x} dx + C,$

hence

 $e^{-x}u = -xe^{-x} - e^{-x} + C$

and multiplying the equality by e^x

we get

$$u = -x - 1 + Ce^x.$$

3) Substituting $u = \sin x$ we have

$$\sin y = -x - 1 + Ce^{x}$$

and using initial conditions $x = 0, y = 0$ we get $C = 1$.

Finally obtain

$$\sin y = -x - 1 + e^x.$$

<u>Answer:</u> sin $y = -x - 1 + e^x$.

www.AssignmentExpert.com