Answer on Question \#58663 - Math - Differential Equations
 Question

Find the general solution of the following differential equation

$$
y^{\prime \prime}-4 y^{\prime}+3 y=2(1+2 x) e^{x}+x
$$

Solution

The auxiliary equation is

$$
\lambda^{2}-4 \lambda+3=0
$$

Its solutions are

$$
\lambda_{1}=\frac{4-\sqrt{16-12}}{2}=1, \quad \lambda_{2}=\frac{4+2}{2}=3 .
$$

The general solution of the homogeneous differential equation $y^{\prime \prime}-4 y^{\prime}+3 y=0$ is

$$
\begin{gathered}
Y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
Y=c_{1} e^{x}+c_{2} e^{3 x}
\end{gathered}
$$

where c_{1}, c_{2} are arbitrary real constants.
The general solution of the non-homogeneous differential equation

$$
y^{\prime \prime}-4 y^{\prime}+3 y=2(1+2 x) e^{x}+x
$$

is

$$
y=Y+\tilde{y}
$$

Y is the general solution of the homogeneous differential equation;
\tilde{y} is a particular solution of the non-homogeneous differential equation.
We use the method of undetermined coefficients.
Because $e^{x}=e^{x \lambda_{1}}$, we search a particular solution in the following form:
$\tilde{y}=\left(A x^{2}+B x\right) e^{x}+C x+D=A x^{2} e^{x}+B x e^{x}+C x+D$
$\widetilde{y^{\prime}}=(2 A x+B) e^{x}+\left(A x^{2}+B x\right) e^{x}+C=A x^{2} e^{x}+(2 A+B) x e^{x}+B e^{x}+C$
$\widetilde{y^{\prime \prime}}=2 A x e^{x}+A x^{2} e^{x}+(2 A+B) e^{x}+(2 A+B) x e^{x}+B e^{x}=A x^{2} e^{x}+2(A+B) e^{x}+(4 A+B) x e^{x}$
Plug $\hat{y}, \widetilde{y^{\prime}}, \widetilde{y^{\prime \prime}}$ into the initial non-homogeneous differential equation:
$A x^{2} e^{x}+2(A+B) e^{x}+(4 A+B) x e^{x}-4\left(A x^{2} e^{x}+(2 A+B) x e^{x}+B e^{x}+C\right)+$
$+3\left(A x^{2} e^{x}+B x e^{x}+C x+D\right)=2(1+2 x) e^{x}+x$
$-4 A x e^{x}+2(A+B) e^{x}+3 C x+3 D-4 C=4 x e^{x}+2 e^{x}+x$
Equate like terms and get the following system of equations:

$$
\left\{\begin{array} { c }
{ - 4 A = 4 } \\
{ 2 (A - B) = 2 } \\
{ 3 C = 1 } \\
{ 3 D - 4 C = 0 }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{c}
A=-1 \\
B=-2 \\
C=\frac{1}{3} \\
D=\frac{4}{9}
\end{array}\right.\right.
$$

Then

$$
\tilde{y}=-x^{2} e^{x}-2 x e^{x}+\frac{x}{3}+\frac{4}{9} .
$$

Finally get

$$
y=Y+\tilde{y}=c_{1} e^{x}+c_{2} e^{3 x}-x^{2} e^{x}-2 x e^{x}+\frac{x}{3}+\frac{4}{9}
$$

Answer: $y=c_{1} e^{x}+c_{2} e^{3 x}-x^{2} e^{x}-2 x e^{x}+\frac{x}{3}+\frac{4}{9}$.

