Answer on Question #58659 - Math - Statistics and Probability

Question

The table below shows discrete frequency distribution data. Use it to answer the questions that follow.

Class 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39

Frequency 5 8 10 12 7 6 3 2

Compute:

- (i) Mode of the distribution (3marks);
- (ii) The 7th decile (3marks);
- (iii) The third quartile (4marks).

Solution

(i) To find the mode of grouped distribution, the following formula will be used:

Mode =
$$l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \cdot h$$
,

where l is the lower limit of model class, f_0 is the frequency of class preceding, f_1 is the frequency of that class and f_2 is the frequency of class succeeding the model class respectively, h is the class width.

Let's put the numbers into a table:

Class	Frequency	Cumulative	
		Frequency	
0-4	5	5	
5-9	8	13	
10-14	10 (f ₀)	23	
15-19	$12(f_1)$	35	Mode interval
20-24	7 (f ₂)	42	7th decile and third quartile interval
25-29	6	48	
30-34	3	51	
35-39	2	53	
$\sum f$	53		

The mode containing class is [15-19] has the biggest frequency 12.

So the mode value is

Mode=
$$15 + \frac{12-10}{2\cdot 12-10-7} \cdot 4 = 15 + \frac{2}{24-17} \cdot 4 = 15 + \frac{8}{7} = 16\frac{1}{7} = 16.14$$
.

(ii) To find the 7th decile, we need to use the formula:

$$D_k = l_i + \frac{\frac{k}{10} \cdot \sum f - f_{D_k - 1}}{f_{D_k - 1}} \cdot h$$

where l_i is the lower limit of decile class, $\sum f_i$ is the sum of the absolute frequency; $f_{D_k-1}^{'}$ is absolute frequency lies below the decile class; f_{D_k-1} is frequency of the decile class; k is the decile number; h is the class width.

The 7th decile containing class is [20-24], because Cumulative frequency in that interval is $42 > 37.1 = \frac{53}{10} \cdot 7$.

Therefore,
$$D_k = 20 + \frac{\frac{7}{10} \cdot 53 - 35}{7} \cdot 4 = 20 + \frac{0.7 \cdot 53 - 35}{7} \cdot 4 = 20 + \frac{2.1}{7} \cdot 4 = 20 + 1.2 = 21.2$$
.

(iii) To find the third quartile, we need to use the formula:

$$Q_3 = l + \frac{0.75 \cdot \sum f - f_{Q_3 - 1}}{f_{Q_3 - 1}} \cdot h$$
,

where I is the lower limit of the third quartile class, $\sum f$ is the sum of the absolute frequency; $f_{Q_3-1}^{'}$ is absolute frequency lies below the quartile class; f_{Q_3-1} is frequency of the quartile class; h is the class width.

The third quartile containing class is [20-24], because Cumulative frequency in that interval is $42 > 39.75 = \frac{53}{4} \cdot 3$.

$$Q_3 = 20 + \frac{0.75 \cdot 53 - 35}{7} \cdot 4 = 20 + \frac{39.75 - 35}{7} \cdot 4 = 20 + \frac{4.75 \cdot 4}{7} = 20 + 2.71 = 22.71$$
.

Answer: (i) 16.14; (ii) 21.2; (iii) 22.71.