Answer on Question #58626 - Math - Trigonometry

Question

Which function's graph has a period of 2?

$$y = 2sin\pi x$$

$$y = 3\cos x$$

$$y = -4\sin 2x$$

$$y = \cos(x - \frac{\pi}{2})$$

Solution

Let the unknown sine function be y = Asin(bx + c) + d

Then the period: $T = \frac{t}{b}$, where t is a regular period of function (for example, regular period of sine and cosine t = 2π and for tangent and cotangent t = π).

Our job is to find a function whose period is equal to 2. So in our formula, T = 2. From the question it is clear that we need to look for these functions among the sine and cosine, then $t=2\pi$.

Substitute the values into the formula:

$$2=\frac{2\pi}{b},$$

hence

$$b=\frac{2\pi}{2}=\pi.$$

We also know that b is the coefficient of x, so we now find the function whose coefficient near x is π . That's only one function:

$$y = 2\sin \pi x$$

Answer:

 $y = 2sin\pi x$

Question

Which description matches the transformation y = cosx undergoes to produce y = 3cos(-2x)? Reflection through the y-axis, vertical shift of 2 units, horizontal shift right by 3 units.

Horizontal shift left 2 units, then vertical shift up by 3 units.

Horizontal compression by factor $\frac{1}{2}$, vertical stretch by factor 3, then a reflection through the y-axis. Horizontal stretch by factor 2, reflection through the x-axis, then vertical stretch by factor 3.

Solution

Transformations "after" the original function.

New function	How points in graph of $f(x)$ become points of new graph	visual effect
f(x) + d	$(a,b)\mapsto (a,b+d)$	shift up by d
f(x) - d	$(a,b) \mapsto (a,b-d)$	shift down by d
cf(x)	$(a,b)\mapsto (a,cb)$	stretch vertically by c
$\frac{1}{c}f(x)$	$(a,b)\mapsto (a,\frac{1}{c}b)$	shrink vertically by $\frac{1}{c}$
-f(x)	$(a,b) \mapsto (a,-b)$	flip over the x -axis

Transformations "before" the original function.

New function	How points in graph of $f(x)$ become points of new graph	visual effect
f(x+d)	$(a,b) \mapsto (a-d,b)$	shift left by d
f(x-d)	$(a,b) \mapsto (a+d,b)$	shift right by d
f(cx)	$(a,b)\mapsto (\frac{1}{c}a,b)$	shrink horizontally by $\frac{1}{c}$
$f(\frac{1}{c}x)$	$(a,b)\mapsto (ca,b)$	stretch horizontally by c
f(-x)	$(a,b) \mapsto (-a,b)$	flip over the y-axis

Suppose that we have a function y = cosx. To transform it, we do the following steps:

- 1. $y = \cos(2x)$: we have to shrink the function $y = \cos x$ horizontally by $\frac{1}{2}$.
- 2. $y = 3\cos(2x)$: the function $y = \cos(2x)$ is stretched vertically by 3.
- 3. $y = 3\cos(-2x)$: the final step is to flip the function $y = 3\cos(2x)$ over the y-axis.

Answer:

Horizontal compression by factor $\frac{1}{2}$, vertical stretch by factor 3, then a reflection through the y-axis.