Answer on Question \#58603 - Math - Abstract Algebra

Question

Prove that $H=\left\{a+i b \in \mathbb{C} \mid a^{2}+b^{2}=1\right\}$ is a subgroup of \mathbb{C}, where \mathbb{C} is the set of complex numbers, H is the set of numbers $a+b i$, where $a, b \in \varphi$. Show that H is a subgroup of non-zero real numbers under multiplication.

Solution

It is given that $H=\left\{a+i b \in \mathbb{C} \mid a^{2}+b^{2}=1\right\}$. Let $G=\left\{c+i d \in \mathbb{C} \mid c^{2}+d^{2}=1\right\}$. Then $H * G$ will be

$$
(a+i b) *(c+i d)=a c+i a d+i c b-b d=a c-b d+(a d+c b) i
$$

We will prove that $(a c-b d)^{2}+(a d+c b)^{2}=1$:

$$
\begin{aligned}
(a c-b d)^{2}+ & (a d+c b)^{2}=a^{2} c^{2}+b^{2} d^{2}-2 a b c d+a^{2} d^{2}+2 a b c d+b^{2} c^{2} \\
& =a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(d^{2}+c^{2}\right)=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)
\end{aligned}
$$

$\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=1$, because $a^{2}+b^{2}=1$ by the statement of the question and $c^{2}+d^{2}=1$ by the assumption.

