Answer on Question \#58430 - Math - Differential Equations

Question

$y^{\prime \prime \prime}+y^{\prime \prime}=8 x^{2}$.

Solution

The general solution will be the sum of the complementary solution and particular solution

$$
y=y_{0+} y^{*}
$$

Find complementary solution $y^{\prime \prime \prime}+y^{\prime \prime}=0$.
Set up and solve the characteristic equation:
$k^{3}+k^{2}=0$,
$k_{1}=k_{2}=0, k_{3}=-1$,
then
$y_{0}=C_{1}+C_{2} x+C_{3} e^{-x}$.
Find a particular solution of $y^{\prime \prime \prime}+y^{\prime \prime}=8 x^{2}$ by the method of undetermined coefficients:
$y^{*}=x^{2}\left(A x^{2}+B x+C\right)=A x^{4}+B x^{3}+C x^{2}$.
Solve for unknown constants A, B, C :
$y^{* \prime}=4 A x^{3}+3 B x^{2}+2 C x$.
$y^{* \prime \prime}=12 A x^{2}+6 B x+2 C$.
$y^{* \prime \prime \prime}=24 A x+6 B$.

Substitute the particular solution into the differential equation:
$24 A x+6 B+12 A x^{2}+6 B x+2 C=8 x^{2}$.
$12 A x^{2}+(24 A+6 B) x+(6 B+2 C)=8 x^{2}$.
Solve the system:

$$
\left\{\begin{array} { c }
{ 1 2 A = 8 , } \\
{ 2 4 A + 6 B = 0 , } \\
{ 6 B + 2 C = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{c}
A=\frac{2}{3} \\
B=-4 A=-\frac{8}{3} \\
C=-3 B=8
\end{array}\right.\right.
$$

Thus,
$y^{*}=\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2}$,
then the general solution is given by

$$
y=y_{0}+y^{*}=C_{1}+C_{2} x+C_{3} e^{-x}+\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2}
$$

Answer: $y=C_{1}+C_{2} x+C_{3} e^{-x}+\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2}$.

